亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

二次函數(shù)教案

時間:2022-07-31 08:25:10 教案大全 我要投稿
  • 相關(guān)推薦

二次函數(shù)教案

  作為一名辛苦耕耘的教育工作者,時常需要編寫教案,教案是教學藍圖,可以有效提高教學效率。那要怎么寫好教案呢?下面是小編整理的二次函數(shù)教案,僅供參考,歡迎大家閱讀。

二次函數(shù)教案

二次函數(shù)教案1

  一、教學目標:

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

  2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

  3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

  二、教學重點、難點:

  教學重點:

  1.體會方程與函數(shù)之間的聯(lián)系。

  2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

  教學難點:

  1.探索方程與函數(shù)之間關(guān)系的過程。

  2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

  三、教學方法:啟發(fā)引導 合作交流

  四:教具、學具:課件

  五、教學媒體:計算機、實物投影。

  六、教學過程:

  檢查預習 引出課題

  預習作業(yè):

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的`解.

  師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。

  教師重點關(guān)注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

  設(shè)計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。

二次函數(shù)教案2

  教學目標:

  1、使學生進一步理解二次函數(shù)的基本性質(zhì);

  2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學思想.培養(yǎng)學生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力.

  3、使學生參與教學過程,通過主體的積極思維,體驗感悟數(shù)學.逐步建立數(shù)學的觀念,培養(yǎng)學生獨立地獲取知識的能力.

  教學重點:初步理解數(shù)形結(jié)合的數(shù)學思想

  教學難點:初步理解數(shù)形結(jié)合的數(shù)學思想

  教學用具:微機

  教學方法:探究式、小組合作學習

  教學過程:

  例1、已知:拋物線y=x2-(m2-1)x-2m2-2

  ⑴求證:無論m取什么實數(shù),拋物線與x軸一定有兩個交點

 、苖取什么實數(shù)時,兩交點間距離最短?是多少?

  解:

  △ =(m2-1)2+4(2m2+2)

  =m4-2m2+1+8m2+8

  =m4+6m2+9

  =(m2+3)2

  m2≥0

  ∴m2+3>0

  ∴△>0

  ∴拋物線與x軸有兩個交點

  問題:為什么說當△>0時,拋物線y =ax2+bx+c與x軸有兩個交點.(能否從數(shù)和形兩方面說明)

  設(shè)計意圖:在課堂上創(chuàng)設(shè)讓學生說數(shù)學的機會,學會合作學習,以達到①經(jīng)驗共享,在思維的碰撞中共同提高.②學會合作,消除個人中心.③發(fā)現(xiàn)自我,提高參與度.④弘揚個體的主體性,形成健康,豐富的個性.

  數(shù):點在曲線上,點的坐標滿足曲線的方程.反之,曲線方程的每一個實數(shù)解對應的點都在曲線上.拋物線與x軸的交點,既在拋物線上,又在x軸上.所以交點的坐標既滿足拋物線的解析式,也滿足x軸的解析式.設(shè)交點坐標為(x,y)

  ∴

  這樣交點問題就轉(zhuǎn)化成求這個二元二次方程組的解.代入y =0,消去y,轉(zhuǎn)化成ax2+bx+c=0這個一元二次方程求根問題.根據(jù)以前學過的知識,當△>0時, ax2+bx+c=0有兩個不相等的實根.∴y =ax2+bx+c

  y =0

  有兩個不等的實數(shù)解

  ∴拋物線與x軸交于兩個不同的點.

  形:頂點在x軸上方,且開口向下.或者頂點在x軸下方,且開口向上.

  設(shè)計意圖:滲透解析幾何的基本思想

  使學生掌握轉(zhuǎn)化思想使學生在解題過程中,感知數(shù)學的直觀性和形式化這二重性.掌握數(shù)形結(jié)合,分類討論的思想方法.逐步學會數(shù)學的思維.

  轉(zhuǎn)化成代數(shù)語言為:

  小結(jié):第一種方法,根據(jù)解析幾何的'基本思想.將求曲線的交點問題,轉(zhuǎn)化成求方程組的解的問題.

  第二種方法,借助于圖象思考問題,比較直觀.發(fā)現(xiàn)規(guī)律后,再用數(shù)學的符號語言將其形式化.這既體現(xiàn)了數(shù)學中的數(shù)形結(jié)合的思想方法,也是探索解數(shù)學問題的一般方法.

  思考:試從數(shù)、形兩方面說明拋物線與x軸的交點個數(shù)與判別 式的符號的關(guān)系.

  設(shè)計意圖:數(shù)學學習是一個再創(chuàng)造的過程,不能等同于數(shù)學知識的匯集,而要讓學生經(jīng)歷數(shù)學知識的創(chuàng)造過程.使主體積極地參與到學習中去.以數(shù)學知識為載體,揭示出蘊涵于其中的數(shù)學思想方法,逐步形成數(shù)學觀念.

 、苖取什么實數(shù)時,兩交點間距離最短?是多少?

  解:設(shè)二次函數(shù)與x軸的兩交點為(x1,0),(x2,0)

  解法㈠ 由⑴可知m為任何實數(shù)時, 都有△>0

  解①

  ∴ x1+x2=m2-1

  x1·x2=-2(m2+1)

  ∴│x2-x1│=

  =

  =

  =

  =m2+3

  ∴當m =0時,兩交點最小距離為3

  這里兩交點間距離是m的函數(shù)

  設(shè)計意圖:培養(yǎng)學生的問題意識.在解題過程中,發(fā)現(xiàn)問題,并能運用已有的數(shù)學知識,將其一般化,形式化,解決問題,體會數(shù)學問題解決的一般方法.培養(yǎng)學生獨立地獲取數(shù)學知識的能力.滲透函數(shù)思想

  問題: 觀察本題兩交點間距離與判別式的值之間有何異同?具有一般的規(guī)律嗎?如何說明.

  設(shè)x1、x2 為ax2+bx+c =0的兩根

  可以推出:

  還可以理解為頂點到x軸距離最短.

  設(shè)計意圖:在對比、分析中,明確概念,揭示知識間的聯(lián)系,幫助學生建立良好的認知結(jié)構(gòu).

  小結(jié):觀察這道題的結(jié)論,我們猜測出規(guī)律,將其一般化,推導出這個公式,這是學習數(shù)學知識的一般方法.

  解法㈡:用十字相乘法或求根公式法求根.

  思考:一元二次方程與二次函數(shù)的關(guān)系.

  思考:求m取什么實數(shù)時,y =x2-(m2-1)x -2 m2-2被直線y =2所截得的線段最短?是多少?

  練習:

  觀察函數(shù) 的圖象,回答:

 。1)y>0時,x的取值范圍如何?

 。2)y=0時,x取什么值?

  (1)y<0時,x的取值范圍如何?

  小結(jié):數(shù)與形是數(shù)學中相互依賴的兩個方面.圖形比較直觀,可以啟發(fā)思路;而數(shù)學的嚴格證明也是必不可少的.直觀性和形式化是數(shù)學的兩重性.

  探究活動

  探究問題:

  欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價每把8元購進雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價每把為14元出售時,月銷售量為100把,數(shù)學教案-二次函數(shù)y=ax2+bx+c 的圖象,初中數(shù)學教案《數(shù)學教案-二次函數(shù)y=ax2+bx+c 的圖象》。如果零售單價每降價0.1元 , 月銷售量就要增加5把.

  (1) 欣欣日用品零售商店以零售單價14元出售時,一個月的利潤為多少元?

  (2) 欣欣日用品零售商店為了擴大銷售記錄,現(xiàn)實行降價銷售,問分別降價0.2元、0.8元、1.2元、1.6元、2.4元、3元時的利潤是多少?

  (3) 欣欣日用品零售商店實行降價銷售后,問降價多少元時利潤最大?最大利潤為多少元?

  (4) 現(xiàn)在該公司的批發(fā)部為了再次擴大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購進雨傘的數(shù)量超過100把,其超過100把的部分每把按原價九五折(即百分之95)付費,但零售價每把不能低于10元。欣欣日用品零售商店應將這種雨傘的零售單價定為每把多少元出售時,才能使這種雨傘的月銷售利潤最大?最大月銷售利潤是多少元?(銷售利潤=銷售款額—進貨款額)

  解:(1)(14—8) (元)

 。2)638元、728元、748元、792元、792元、750元。

 。3)設(shè)降價 元時利潤最大,最大利潤為 元

  =

  =

  =

  ∴ 當 時, 有最大值

  元

 。4)設(shè)降價 元時利潤最大,利潤為 元

  (其中 )。

  化簡,得 。

  ,

  ∴ 當 時, 有最大值。

  ∴ 。

  數(shù)學教案-二次函數(shù)y=ax2+bx+c 的圖象

二次函數(shù)教案3

  本節(jié)課在二次函數(shù)y=ax2和y=ax2+c的圖象的基礎(chǔ)上,進一步研究y=a(x-h)2和y=a(x-h)2+k的圖象,并探索它們之間的關(guān)系和各自的性質(zhì).旨在全面掌握所有二次函數(shù)的圖象和性質(zhì)的變化情況.同時對二次函數(shù)的研究,經(jīng)歷了從簡單到復雜,從特殊到一般的過程:先是從y=x2開始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c.符合學生的認知特點,體會建立二次函數(shù)對稱軸和頂點坐標公式的必要性.

  在教學中,主要是讓學生自己動手畫圖象,通過自己的觀察、交流、對比、概括和反思[

  等探索活動,使學生達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解.并能利用它的性質(zhì)解決問題.

  2.4二次函數(shù)y=ax2+bx+c的圖象(一)

  教學目標

  (一)教學知識點[

  1.能夠作出函數(shù)y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系.理解a,h,k對二次函數(shù)圖象的影響.

  2.能夠正確說出y=a(x-h)2+k圖象的開口方向、對稱軸和頂點坐標.

  (二)能力訓練要求

  1.通過學生自己的探索活動,對二次函數(shù)性質(zhì)的研究,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解.

  2.經(jīng)歷探索二次函數(shù)的圖象的作法和性質(zhì)的過程,培養(yǎng)學生的探索能力.

  (三)情感與價值觀要求

  1.經(jīng)歷觀察、猜想、總結(jié)等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點.

  2.讓學生學會與人合作,并能與他人交流思維的過程和結(jié)果.

  教學重點

  1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的作法和性質(zhì)的過程.

  2.能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能理解它與y=ax2的圖象的關(guān)系,理解a、h、k對二次函數(shù)圖象的影響.

  3.能夠正確說出y=a(x-h)2+k圖象的開口方向、對稱軸和頂點坐標.

  教學難點

  能夠作出y=a(x-h)2和y=a(x-h)2+k的圖象,并能夠理解它與y=ax2的圖象的關(guān)系,理解a、h、k對二次函數(shù)圖象的影響.

  教學方法

  探索比較總結(jié)法.

  教具準備

  投影片四張

  第一張:(記作2.4.1 A)

  第二張:(記作2.4.1 B)

  第三張:(記作2.4.1 C)

  第四張:(記作2.4.1 D)

  教學過程

 、.創(chuàng)設(shè)問題情境、引入新課

  [師]我們已學習過兩種類型的二次函數(shù),即y=ax2與y=ax2+c,知道它們都是軸對稱圖形,對稱軸都是y軸,有最大值或最小值.頂點都是原點.還知道y=ax2+c的圖象是函數(shù)y=ax2的圖象經(jīng)過上下移動得到的,那么y=ax2的圖象能否左右移動呢?它左右移動后又會得到什么樣的函數(shù)形式,它又有哪些性質(zhì)呢?本節(jié)課我們就來研究有關(guān)問題.

 、.新課講解

  一、比較函數(shù)y=3x2與y=3(X-1)2的圖象的性質(zhì).

  投影片:(2.4 A)

  (1)完成下表,并比較3x2和3(x-1)2的值,

  它們之間有什么關(guān)系?

  X -3 -2 -1 0 1 2 3 4

  3x2

  3(x-1)2

  (2)在下圖中作出二次函數(shù)y=3(x-1)2的圖象.你是怎樣作的?

  (3)函數(shù)y=3(x-1)2的圖象與y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么?

  (4)x取哪些值時,函數(shù)y=3(x-1)2的值隨x值的增大而增大?x取哪些值時,函數(shù)y=3(x-1)2的值隨x值的增大而減小?

  [師]請大家先自己填表,畫圖象,思考每一個問題,然后互相討論,總結(jié).

  [生](1)第二行從左到右依次填:27.12,3,0,3, 12,27,48;第三行從左到右依次填48,27,12,3,0,3, 12,27.

  (2)用描點法作出y=3(x-1)2的圖象,如上圖.

  (3)二次函數(shù))y=3(x-1)2的.圖象與y=3x2的圖象形狀相同,開口方向也相同,但對稱軸和頂點坐標不同,y=3(x-1)2的圖象的對稱軸是直線x=1,頂點坐標是(1,0).

  (4)當x1時,函數(shù)y=3(x-1)2的值隨x值的增大而增大,x1時,y=3(x-1)2的值隨x值的增大而減小.

  [師]能否用移動的觀點說明函數(shù)y=3x2與y=3(x-1)2的圖象之間的關(guān)系呢?

  [生]y=3(x-1)2的圖象可以看成是函數(shù))y=3x2的圖象整體向右平移得到的.

  [師]能像上節(jié)課那樣比較它們圖象的性質(zhì)嗎?

  [生]相同點:

  a.圖象都中拋物線,且形狀相同,開口方向相同.

  b. 都是軸對稱圖形.

  c.都有最小值,最小值都為0.

  d.在對稱軸左側(cè),y都隨x的增大而減小.在對稱軸右側(cè),y都隨x的增大而增大.

  不同點:

  a.對稱軸不同,y=3x2的對稱軸是y軸y=3(x-1)2的對稱軸是x=1.

  b. 它們的位置不問.[來源:Www.zk5u.com]

  c. 它們的頂點坐標不同. y=3x2的頂點坐標為(0,0),y=3(x-1)2的頂點坐標為(1,0),

  聯(lián)系:

  把函數(shù)y=3x2的圖象向右移動一個單位,則得到函數(shù)y=3(x-1)2的圖像.

  二、做一做

  投影片:(2.4.1 B)

  在同一直角坐標系中作出函數(shù)y=3(x-1)2和y=3(x-1)2+2的圖象.并比較它們圖象的性質(zhì).

  [生]圖象如下

  它們的圖象的性質(zhì)比較如下:

  相同點:

  a.圖象都是拋物線,且形狀相同,開口方向相同.

  b. 都足軸對稱圖形,對稱軸都為x=1.

  c. 在對稱軸左側(cè),y都隨x的增大而減小,在對稱軸右側(cè),y都隨x的增大而增大.

  不同點:

  a.它們的頂點不同,最值也不同.y=3(x-1)2的頂點坐標為(1.0),最小值為0.y=3(x-1)2+2的頂點坐標為(1,2),最小值為2.

  b. 它們的位置不同.

  聯(lián)系:

  把函數(shù)y=3(x-1)2的圖象向上平移2個單位,就得到了函數(shù)y=3(x-1)2+2的圖象.

  三、總結(jié)函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象之間的關(guān)系.

  [師]通過上畫的討論,大家能夠總結(jié)出這三種函數(shù)圖象之間的關(guān)系嗎?

  [生]可以.

  二次函數(shù)y=3x2,y=3(x-1)2,y=3(x-1)2+2的圖象都是拋物線.并且形狀相同,開口方向相同,只是位置不同,頂點不同,對稱軸不同,將函數(shù)y=3x2的圖象向右平移1個單位,就得到函數(shù)y=3(x-1)2的圖象;再向上平移2個單位,就得到函數(shù)y=3(x-1)2+2的圖象.

  [師]大家還記得y=3x2與y=3x2-1的圖象之間的關(guān)系嗎?

  [生]記得,把函數(shù)y=3x2向下平移1個平位,就得到函數(shù)y=3x2-1的圖象.

  [師]你能系統(tǒng)總結(jié)一下嗎?

  [生]將函數(shù)y=3x2的圖象向下移動1個單位,就得到了函數(shù)y=3x2-1的圖象,向上移動1個單位,就得到函數(shù)y=3x2+1的圖象;將y=3x2的圖象向右平移動1個單位,就得到函數(shù)y=3(x-1)2的圖象:向左移動1個單位,就得到函數(shù)y=3(x+1)2的圖象;由函數(shù)y=3x2向右平移1個單位、再向上平移2個單位,就得到函數(shù)y=3(x-1)2+2的圖象.

  [師]下面我們就一般形式來進行總結(jié).

  投影片:(2.4.1 C)

  一般地,平移二次函數(shù)y=ax2的圖象便可得到二次函數(shù)為y=ax2+c,y=a(x-h)2,y=a(x-h)2+k的圖象.

  (1)將y=ax2的圖象上下移動便可得到函數(shù)y=ax2+c的圖象,當c0時,向上移動,當c0時,向下移動.

  (2)將函數(shù)y=ax2的圖象左右移動便可得到函數(shù)y=a(x-h)2的圖象,當h0時,向右移動,當h0時,向左移動.

  (3)將函數(shù)y=ax2的圖象既上下移,又左右移,便可得到函數(shù)y=a(x-h)+k的圖象.

  因此,這些函數(shù)的圖象都是一條拋物線,它們的開口方向,對稱軸和頂點坐標與a,h,k的值有關(guān).

  下面大家經(jīng)過討論之后,填寫下表:

  y=a(x-h)2+k 開口方向 對稱軸 頂點坐標

  a0

  a0

  四、議一議

  投影片:(2,4.1 D)

  (1)二次函數(shù)y=3(x+1)2的圖象與二次函數(shù)y=3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么?

  (2)二次函數(shù)y=-3(x-2)2+4的圖象與二次函數(shù)y=-3x2的圖象有什么關(guān)系?它是軸對稱圖形嗎?它的對稱軸和頂點坐標分別是什么?

  (3)對于二次函數(shù)y=3(x+1)2,當x取哪些值時,y的值隨x值的增大而增大?當x取哪些值時,y的值隨x值的增大而減小?二次函數(shù)y=3(x+1)2+4呢?

  [師]在不畫圖象的情況下,你能回答上面的問題嗎?

  [生](1)二次函數(shù)y=3(x+1)2的圖象與y=3x2的圖象形狀相同,開口方向也相同,但對稱軸和頂點坐標不同,y=3(x+1)2的圖象的對稱軸是直線x=-1,頂點坐標是(-1,0).只要將y=3x2的圖象向左平移1個單位,就可以得到y(tǒng)=3(x+1)2的圖象.

  (2)二次函數(shù)y=-3(x-2)2+4的圖象與y=-3x2的圖象形狀相同,只是位置不同,將函數(shù)y=-3x2的圖象向右平移2個單位,就得到y(tǒng)=-3(x-2)2的圖象,再向上平移4個單位,就得到y(tǒng)=-3(x-2)2+4的圖象y=-3(x-2)2+4的圖象的對稱軸是直線x=2,頂點坐標是(2,4).

  (3)對于二次函數(shù)y=3(x+1)2和y=3(x+1)2+4,它們的對稱軸都是x=-1,當x-1時,y的值隨x值的增大而減小;當x-1時,y的值隨x值的增大而增大.

  Ⅲ.課堂練習

  隨堂練習

 、.課時小結(jié)

  本節(jié)課進一步探究了函數(shù)y=3x2與y=3(x-1)2,y=3(x-1)2+2的圖象有什么關(guān)系,對稱軸和頂點坐標分別是什么這些問題.并作了歸納總結(jié).還能利用這個結(jié)果對其他的函數(shù)圖象進行討論.

 、.課后作業(yè)

  習題2.4

 、.活動與探究

  二次函數(shù)y= (x+2)2-1與y= (x-1)2+2的圖象是由函數(shù)y= x2的圖象怎樣移動得到的?它們之間是通過怎樣移動得到的?

  解:y= (x+2)2-1的圖象是由y= x2的圖象向左平移2個單位,再向下平移1個單位得到的,y= (x-1)2+2的圖象是由y= x2的圖象向右平移1個單位,再向上平移2個單位得到的.

  y= (x+2)2-1的圖象向右平移3個單位,再向上平移3個單位得到y(tǒng)= (x-1)2+2的圖象.

  y= (x-1)2+2的圖象向左平移3個單位,再向下平移3個單位得到y(tǒng)= (x+2)2-1的圖象.

  板書設(shè)計

  4.2.1 二次函數(shù)y=ax2+bx+c的圖象(一) 一、1. 比較函數(shù)y=3x2與y=3(x-1)2的

  圖象和性質(zhì)(投影片2.4.1 A)

  2.做一做(投影片2.4.1 B)

  3.總結(jié)函數(shù)y=3x2,y=3(x-1)2y= 3(x-1)2+2的圖象之間的關(guān)系(投影片2.4.1 C)

  4.議一議(投影片2.4.1 D)

  二、課堂練習

  1.隨堂練習

  2.補充練習

  三、課時小結(jié)

  四、課后作業(yè)

  備課資料

  參考練習

  在同一直角坐標系內(nèi)作出函數(shù)y=- x2,y=- x2-1,y=- (x+1)2-1的圖象,并討論它們的性質(zhì)與位置關(guān)系.

  解:圖象略

  它們都是拋物線,且開口方向都向下;對稱軸分別為y軸y軸,直線x=-1;頂點坐標分別為(0,0),(0,-1),(-1,-1).

  y=- x2的圖象向下移動1個單位得到y(tǒng)=- x2-1 的圖象;y=- x2的圖象向左移動1個單位,向下移動1個單位,得到y(tǒng)=- (x+1)2-1的圖象.

二次函數(shù)教案4

  一. 教材分析

  1、教材的地位及作用

  函數(shù)是一種重要的數(shù)學思想,是實際生活中數(shù)學建模的重要工具,二次函數(shù)的教學在初中數(shù)學教學中有著重要的地位。本節(jié)內(nèi)容的教學,在函數(shù)的教學中有著承上啟下的作用。它既是對已學一次函數(shù)及反比例函數(shù)的復習,又是對二次函數(shù)知識的延續(xù)和深化,為將來二次函數(shù)一般情形的教學乃至高中階段函數(shù)的教學打下基礎(chǔ),做好鋪墊。

  2.教學目標

  (1) 掌握二此函數(shù)的概念并能夠根據(jù)實際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣。[知識與技能目標]

  (2)讓學生經(jīng)歷觀察、比較、歸納、應用,以及猜想、驗證的學習過程,使學生掌握類比、轉(zhuǎn)化等學習數(shù)學的方法,養(yǎng)成既能自主探索,又能合作探究的良好學習習慣。[過程與方法目標]

  (3) 讓學生在數(shù)學活動中學會與人相處,感受探索與創(chuàng)造,體驗成功的喜悅,[情感、態(tài)度、價值觀目標]

  3、教學的重、難點

  重點:二次函數(shù)的概念和解析式

  難點:本節(jié)“合作學習”涉及的實際問題有的較為復雜,要求學生有較強的概括能力

  4、 學情分析

 、賹W生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學生個性活潑,積極性高,初步具有對數(shù)學問題進行合作探究的意識與 能力。

 、鄢跞龑W生程度參差不齊,兩極分化已形成。

  二、教法學法分析

  1` 教法(關(guān)鍵詞:情境、探究、分層)

  基于本節(jié)課內(nèi)容的特點和初三學生的年齡特征,我以“探究式”體驗教學法和“啟發(fā)式”教學法 為主進行教學。讓學生在開放的情境中,在教師的 引導啟發(fā)下,同學的合作幫助下,通過探究發(fā)現(xiàn),讓學生經(jīng)歷數(shù)學知識的形成和應用過程,加深對數(shù)學知識的理解。教師著眼于引導,學生著眼于探索,側(cè)重于學生能力的提高、思維的訓練。同時考慮到學生的個體差異,在教學的各個環(huán)節(jié)中進行分層施教。

  2、學法(關(guān)鍵詞:類比、自主、合作)

  根據(jù)學生的思維特點、認知水平,遵循“教必須以學為立足點”的教育理念,讓每一個學生自主參與整堂課的知識構(gòu)建。在各個環(huán)節(jié)中引導學生類比遷移,對照學習。以自主探索為主,學會合作交流,在師生互動、生生互動中讓每個學生動口,動手,動腦,培養(yǎng)學生學習的主動性和積極性,使學生由“學會”變“會學”和“樂學”。

  3、教學手段

  采用多媒體教學,直觀呈現(xiàn)拋物線和諧、對稱的美,激發(fā)學生的學習 興趣,參與熱情,增大教學容量,提高教學效率。

  三、教學過程

  完整的數(shù)學學習過程是一個不斷探索、發(fā)現(xiàn)、驗證的過程,根據(jù)新課標要求,根據(jù)“以人為本,以學定教”的教學理念,結(jié)合學生實際,制訂以下教學流程:

  (一).創(chuàng)設(shè)情境 溫故引新

  以提問的形式復習一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:

  (1)你們喜歡打籃球嗎?

  (2)你們知道:投籃時,籃球運動的路線是什么曲線?怎樣計算籃球達到最高點時的高度?

  從而引出課題〈〈二次函數(shù)〉〉,導入新課

  (二).合作學習,探索新知

  為了更貼近生活,我先設(shè)計了兩個和實際生活有關(guān)的練習題。鼓勵學生積極發(fā)言,充分調(diào)動學生的主動性。然后出示課本上的兩個問題,在這個環(huán)節(jié)中,我讓學生在教師的引導下,先獨立思考,再以小組為單位交流成果,以培養(yǎng)學生自主探索、合作探究的能力。四個解析式都列出來后。讓學生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學生的語言表達能力。

  學生在學習二次函數(shù)的概念時要求學生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個函數(shù)是不是二次函數(shù)

  (三)當堂訓練 鞏固提高

  由于學生層次不一,練習的設(shè)計充分考慮到學生的個體差異,滿足不同層次學生的.學習需求,實現(xiàn)有“差異的”發(fā)展。讓每一個學生都感受成功的喜悅。我設(shè)計了3道練習題,其難易程度逐步提高,第一道題面對所有的學生,學生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強調(diào)該化簡的必須化簡后才可以判斷。第二道題讓學生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對二次函數(shù)概念的理解。最后一道題綜合性較強,可以提高他們的綜合素質(zhì)。

  (四).小結(jié)歸納 拓展轉(zhuǎn)化

  讓學生用自己的語言談?wù)勛约旱氖斋@,可以將這一節(jié)的知識條理化,進一步掌握二次函數(shù)的概念。

  (五)布置作業(yè) 學以致用

  作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識,檢驗學生掌握知識的情況,發(fā)現(xiàn)和彌補教與學中遺漏與不足。同時,選做題具有總結(jié)性,可引導學生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.

  四.評價分析

  本節(jié)課的教學從學生已有的認知基礎(chǔ)出發(fā),以學生自主探索、合作交流為主線,讓學生經(jīng)歷數(shù)學知識的形成與應用過程,加深對所學知識的理解,從而突破重難點。整節(jié)課注重學生能力的培養(yǎng)和習慣的養(yǎng)成。由于學生的層次不一,我全程關(guān)注每一個學生的學習狀態(tài),進行分層施教,因勢利導,隨機應變,適時調(diào)整教學環(huán)節(jié),,實現(xiàn)評價主體和形式的多樣化,把握評價的時機與尺度,激發(fā)學生的學習興趣,激活課堂氣氛,使課堂教學達到最佳狀態(tài)。

  五.教學反思

  1.本節(jié)課通過學生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。

  2.本節(jié)課設(shè)計的以問題為主線,培養(yǎng)學生有條理思考問題的習慣和歸納概括能力,并重視培養(yǎng)學生的語言表達能力。同時不斷激發(fā)學生的探索精神,提高了學生分析和解決問題的能力。使學生有成功體驗。

二次函數(shù)教案5

  【知識與技能】

  1.會用描點法畫二次函數(shù)=ax2+bx+c的圖象.

  2.會用配方法求拋物線=ax2+bx+c的頂點坐標、開口方向、對稱軸、隨x的增減性.

  3.能通過配方求出二次函數(shù)=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實際問題中的最大值或最小值.

  【過程與方法】

  1.經(jīng)歷探索二次函數(shù)=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會建立二次函數(shù)=ax2+bx+c(a≠0)對稱軸和頂點坐標公式的必要性.

  2.在學習=ax2+bx+c(a≠0)的`性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.

  【情感態(tài)度】

  進一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學活動的意識.

  【教學重點】

  ①用配方法求=ax2+bx+c的頂點坐標;②會用描點法畫=ax2+bx+c的圖象并能說出圖象的性質(zhì).

  【教學難點】

  能利用二次函數(shù)=ax2+bx+c(a≠0)的對稱軸和頂點坐標公式,解決一些問題,能通過對稱性畫出二次函數(shù)=ax2+bx+c(a≠0)的圖象.

  一、情境導入,初步認識

  請同學們完成下列問題.

  1.把二次函數(shù)=-2x2+6x-1化成=a(x-h)2+的形式.

  2.寫出二次函數(shù)=-2x2+6x-1的開口方向,對稱軸及頂點坐標.

  3.畫=-2x2+6x-1的圖象.

  4.拋物線=-2x2如何平移得到=-2x2+6x-1的圖象.

  5.二次函數(shù)=-2x2+6x-1的隨x的增減性如何?

  【教學說明】上述問題教師應放手引導學生逐一完成,從而領(lǐng)會=ax2+bx+c與=a(x-h)2+的轉(zhuǎn)化過程.

  二、思考探究,獲取新知

  探究1 如何畫=ax2+bx+c圖象,你可以歸納為哪幾步?

  學生回答、教師點評:

  一般分為三步:

  1.先用配方法求出=ax2+bx+c的對稱軸和頂點坐標.

  2.列表,描點,連線畫出對稱軸右邊的部分圖象.

  3.利用對稱點,畫出對稱軸左邊的部分圖象.

  探究2 二次函數(shù)=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?

二次函數(shù)教案6

  二次函數(shù)的圖象與性質(zhì)

  1.畫出函數(shù)=2x2-3x的圖象,說明這個函數(shù)具有哪些性質(zhì)。

  2. 通過配方,寫出下列拋物線的開口方向、對稱軸和頂點坐標。

  (1)=3x2+2x;

  (2)=-x2-2x

  ( 3)=-2x2+8x-8 (4)=12x2-4x+3

  板書設(shè)計

  1、畫函數(shù)=ax2+bx+c(a≠0)的圖象。

 。斜頃r,應以對稱軸為中心,對稱地選取自變量的值,求出相應的函數(shù)值。)

  2、二次函數(shù)=ax2+bx+c(a≠0),

  當a>0時,開口向上,當a<0時,開口向下。

  對稱軸是x=-b2a,頂點坐標是(-b2a,4ac-b24a)

 。ㄗ钪蹬c拋物線的.開口方向及頂點的縱坐標有關(guān)。)

  課后反思

  在本節(jié)教學中,教學仍從回顧上節(jié)人手,使學生掌握二次函數(shù) 是由 如何平移得來,并熟練掌握二次函數(shù) 圖象的開口方向、對稱軸和頂點坐標及有關(guān)性質(zhì)。在此基礎(chǔ)上,引導學生思考二次函數(shù)=ax2+bx+c(a≠0)圖像的開口方向、對稱軸和頂點坐標?這樣激起學生的求知欲望,能進行有目的探究活動,學生變被動為主動,學習方式發(fā)生了改變。這節(jié)課學生既動手又動腦,體驗到學習知識的樂趣。

二次函數(shù)教案7

  教學設(shè)計

  一 教學設(shè)計思路

  通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。

  二 教學目標

  1 知識與技能

  (1).經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系?偨Y(jié)出二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,表述何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

  (2).會利用圖象法求一元二次方程的近似解。

  2 過程與方法

  經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

  三 情感態(tài)度價值觀

  通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況培養(yǎng)學生自主探索意識,從中體會事物普遍聯(lián)系的觀點,進一步體會數(shù)形結(jié)合思想.

  四 教學重點和難點

  重點:方程與函數(shù)之間的聯(lián)系,會利用二次函數(shù)的圖象求一元二次方程的近似解。

  難點:二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

  五 教學方法

  討論探索法

  六 教學過程設(shè)計

  (一)問題的提出與解決

  問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時,球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有關(guān)系

  h=20t5t2。

  考慮以下問題

  (1)球的飛行高度能否達到15m?如能,需要多少飛行時間?

  (2)球的飛行高度能否達到20m?如能,需要多少飛行時間?

  (3)球的`飛行高度能否達到20.5m?為什么?

  (4)球從飛出到落地要用多少時間?

  分析:由于球的飛行高度h與飛行時間t的關(guān)系是二次函數(shù)

  h=20t-5t2。

  所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實際的解,則說明球的飛行高度可以達到問題中h的值:否則,說明球的飛行高度不能達到問題中h的值。

  解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

  當球飛行1s和3s時,它的高度為15m。

  (2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

  當球飛行2s時,它的高度為20m。

  (3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

  因為(-4)2-44.10。所以方程無解。球的飛行高度達不到20.5m。

  (4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

  當球飛行0s和4s時,它的高度為0m,即0s時球從地面飛出。4s時球落回地面。

  由學生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?

  例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。

  分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。

  一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。

  (二)問題的討論

  二次函數(shù)(1)y=x2+x-2;

  (2) y=x2-6x+9;

  (3) y=x2-x+0。

  的圖象如圖26.2-2所示。

  (1)以上二次函數(shù)的圖象與x軸有公共點嗎?如果有,有多少個交點,公共點的橫坐標是多少?

  (2)當x取公共點的橫坐標時,函數(shù)的值是多少?由此,你能得出相應的一元二次方程的根嗎?

  先畫出以上二次函數(shù)的圖象,由圖像學生展開討論,在老師的引導下回答以上的問題。

  可以看出:

  (1)拋物線y=x2+x-2與x軸有兩個公共點,它們的橫坐標是-2,1。當x取公共點的橫坐標時,函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。

  (2)拋物線y=x2-6x+9與x軸有一個公共點,這點的橫坐標是3。當x=3時,函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個相等的實數(shù)根3。

  (3)拋物線y=x2-x+1與x軸沒有公共點, 由此可知,方程x2-x+1=0沒有實數(shù)根。

  總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點的橫坐標就是一元二次方程 =0的根。

  (三)歸納

  一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,

  (1)如果拋物線y=ax2+bx+c與x軸有公共點,公共點的橫坐標是x0,那么當x=x0時,函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個根。

  (2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

  由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。

  (四)例題

  例 利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1)。

  解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點的橫坐標大約是-0.7,2.7。

  所以方程x2-2x-2=0的實數(shù)根為x1-0.7,x22.7。

  七 小結(jié)

  二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點,有一個公共點,有兩個公共點。這對應著一元二次方程根的三種情況:沒有實數(shù)根,有兩個相等的實數(shù)根,有兩個不等的實數(shù)根。

  。

  八 板書設(shè)計

  用函數(shù)觀點看一元二次方程

  拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系

  例題

二次函數(shù)教案8

  教學目標:

  1. 1. 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;

  2. 2. 通過變式教學,培養(yǎng)學生思維的敏捷性、廣闊性、深刻性;

  3. 3. 通過二次函數(shù)的教學讓學生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認識。

  教學重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。

  教學難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。

  教學過程設(shè)計:

  一. 創(chuàng)設(shè)情景、建模引入

  我們已學習了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:

  1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式

  答:S=πR2. ①

  2.寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系

  答:S=L(30-L)=30L-L2 ②

  分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?

  S是否是R、L的一次函數(shù)?

  由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?

  答:二次函數(shù)。

  這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)

  二. 歸納抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,

  那么,y叫做x的二次函數(shù).

  注意:(1)必須a≠0,否則就不是二次函數(shù)了.而b,c兩數(shù)可以是零.(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù).

  練習:1.舉例子:請同學舉一些二次函數(shù)的例子,全班同學判斷是否正確。

  2.出難題:請同學給大家出示一個函數(shù),請同學判斷是否是二次函數(shù)。

 。ㄈ魧W生考慮不全,教師給予補充。如: ; ; ; 的形式。)

 。ㄍㄟ^學生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學生的.實踐能力,有培養(yǎng)了學生的探究精神。并通過開放性的練習培養(yǎng)學生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)

  由前面一次函數(shù)的學習,我們已經(jīng)知道研究函數(shù)一般應按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。

 。ㄔ谶@里指出學習函數(shù)的一般方法,旨在及時進行學法指導;并將此方法形成技能,以指導今后的學習;進一步培養(yǎng)終身學習的能力。)

  三. 嘗試模仿、鞏固提高

  讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究

  1. 1. 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?

  請同學們畫出函數(shù)y=x2的圖象。

  (學生分別畫圖,教師巡視了解情況。)

二次函數(shù)教案9

  【知識與技能】

  1.會用描點法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認識、理解和掌握其性質(zhì).

  2.體會數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡單的實際問題.

  【過程與方法

  經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗,培養(yǎng)觀察、思考、歸納的良好思維習慣.

  【情感態(tài)度】

  通過動手畫圖,同學之間交流討論,達到對二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學的興趣,調(diào)動學生的積極性.

  【教學重點】

  1.會畫y=ax2(a>0)的圖象.

  2.理解,掌握圖象的性質(zhì).

  【教學難點】

  二次函數(shù)圖象及性質(zhì)探究過程和方法的體會教學過程.

  一、情境導入,初步認識

  問題1 請同學們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?

  問題2 如何用描點法畫一個函數(shù)圖象呢?

  【教學說明】

 、俾裕

 、诹斜、描點、連線.

  二、思考探究,獲取新知

  探究1 畫二次函數(shù)y=ax2(a>0)的圖象.

  畫二次函數(shù)y=ax2的.圖象.

  【教學說明】

 、僖笸瑢W們?nèi)巳藙邮?按“列表、描點、連線”的步驟畫圖y=x2的圖象,同學們畫好后相互交流、展示,表揚畫得比較規(guī)范的同學.

 、趶牧斜砗兔椟c中,體會圖象關(guān)于y軸對稱的特征.

  ③強調(diào)畫拋物線的三個誤區(qū).

  誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢.

  誤區(qū)二:并非對稱點,存在漏點現(xiàn)象,導致拋物線變形.

  誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點的同時,還需要向兩旁無限延伸,而并非到某些點停止.

二次函數(shù)教案10

  I.定義與定義表達式一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的'三種表達式一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函數(shù)的圖像在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

二次函數(shù)教案11

  教學目標

  1、經(jīng)歷用三種方式表示變量之間二次函數(shù)關(guān)系的過程,體會三種方式之間的聯(lián)系與各自不同的特點

  2、能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題

  3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究

  教學重點和難點

  重點:用三種方式表示變量之間二次函數(shù)關(guān)系

  難點:根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究

  教學過程設(shè)計

  一、從學生原有的認知結(jié)構(gòu)提出問題

  這節(jié)課,我們來學習二次函數(shù)的三種表達方式。

  二、師生共同研究形成概念

  1、用函數(shù)表達式表示

  ☆做一做書本P56矩形的周長與邊長、面積的關(guān)系

  鼓勵學生間的互相交流,一定要讓學生理解周長與邊長、面積的關(guān)系。

  比較全面、完整、簡單地表示出變量之間的關(guān)系

  2、用表格表示

  ☆做一做書本P56填表

  由于運算量比較大,學生的運算能力又一般,因此,建議把這個表格的一部分數(shù)據(jù)先給出來,讓學生完成未完成的部分空格。

  表格表示可以清楚、直接地表示出變量之間的數(shù)值對應關(guān)系

  3、用圖象表示

  ☆議一議書本P56議一議

  關(guān)于自變量的問題,學生往往比較難理解,講解時,可適當多花時間講解。

  可以直觀地表示出函數(shù)的變化過程和變化趨勢

  ☆做一做書本P57

  4、三種方法對比

  ☆議一議書本P58議一議

  函數(shù)的表格表示可以清楚、直接地表示出變量之間的`數(shù)值對應關(guān)系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關(guān)系。這三種表示方式積壓自有各自的優(yōu)點,它們服務(wù)于不同的需要。

  在對三種表示方式進行比較時,學生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應予以肯定和鼓勵。

二次函數(shù)教案12

  通過學生的討論,使學生更清楚以下事實:

  (1)分解因式與整式的乘法是一種互逆關(guān)系;

  (2)分解因式的結(jié)果要以積的形式表示;

  (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);

  (4)必須分解到每個多項式不能再分解為止。

  活動5:應用新知

  例題學習:

  P166例1、例2(略)

  在教師的引導下,學生應用提公因式法共同完成例題。

  讓學生進一步理解提公因式法進行因式分解。

  活動6:課堂練習

  1.P167練習;

  2. 看誰連得準

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些變形是因式分解,為什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  學生自主完成練習。

  通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

  活動7:課堂小結(jié)

  從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

  學生發(fā)言。

  通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的'乘法的互逆關(guān)系,加深對類比的數(shù)學思想的理解。

  活動8:課后作業(yè)

  課本P170習題的第1、4大題。

  學生自主完成

  通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。

  板書設(shè)計(需要一直留在黑板上主板書)

  15.4.1提公因式法 例題

  1.因式分解的定義

  2.提公因式法

二次函數(shù)教案13

  目標:

  1.使學生掌握用待定系數(shù)法由已知圖象上一個點的坐標求二次函數(shù)y=ax2的關(guān)系式。

  2. 使學生掌握用待定系數(shù)法由已知圖象上三個點的坐標求二次函數(shù)的關(guān)系式。

  3.讓學生體驗二次函數(shù)的函數(shù)關(guān)系式的應用,提高學生用數(shù)學意識。

  重點難點:

  重點:已知二次函數(shù)圖象上一個點的坐標或三個點的坐標,分別求二次函數(shù)y=ax2、y=ax2+bx+c的關(guān)系式是的重點。

  難點:已知圖象上三個點坐標求二次函數(shù)的關(guān)系式是教學的難點。

  教學過程:

  一、創(chuàng)設(shè)問題情境

  如圖,某建筑的屋頂設(shè)計成橫截面為拋物線型(曲線AOB)的薄殼屋頂。它的拱高AB為4m,拱高CO為0.8m。施工前要先制造建筑模板,怎樣畫出模板的輪廓線呢?

  分析:為了畫出符合要求的模板,通常要先建立適當?shù)闹苯亲鴺讼担賹懗龊瘮?shù)關(guān)系式,然后根據(jù)這個關(guān)系式進行計算,放樣畫圖。

  如圖所示,以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立直角坐標系。這時,屋頂?shù)臋M截面所成拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式為: y=ax2 (a<0) (1)

  因為y軸垂直平分AB,并交AB于點C,所以CB=AB2 =2(cm),又CO=0.8m,所以點B的坐標為(2,-0.8)。

  因為點B在拋物線上,將它的坐標代人(1),得 -0.8=a×22 所以a=-0.2

  因此,所求函數(shù)關(guān)系式是y=-0.2x2。

  請同學們根據(jù)這個函數(shù)關(guān)系式,畫出模板的輪廓線。

  二、引申拓展

  問題1:能不能以A點為原點,AB所在直線為x軸,過點A的x軸的垂線為y軸,建立直角坐標系?

  讓學生了解建立直角坐標系的方法不是唯一的,以A點為原點,AB所在的直線為x軸,過點A的x軸的垂線為y軸,建立直角坐標系也是可行的'。

  問題2,若以A點為原點,AB所在直線為x軸,過點A的x軸的垂直為y軸,建立直角坐標系,你能求出其函數(shù)關(guān)系式嗎?

  分析:按此方法建立直角坐標系,則A點坐標為(0,0),B點坐標為(4,0),OC所在直線為拋物線的對稱軸,所以有AC=CB,AC=2m,O點坐標為(2;0.8)。即把問題轉(zhuǎn)化為:已知拋物線過(0,0)、(4,0);(2,0.8)三點,求這個二次函數(shù)的關(guān)系式。

  二次函數(shù)的一般形式是y=ax2+bx+c,求這個二次函數(shù)的關(guān)系式,跟以前學過求一次函數(shù)的關(guān)系式一樣,關(guān)鍵是確定o、6、c,已知三點在拋物線上,所以它的坐標必須適合所求的函數(shù)關(guān)系式;可列出三個方程,解此方程組,求出三個待定系數(shù)。

  解:設(shè)所求的二次函數(shù)關(guān)系式為y=ax2+bx+c。

  因為OC所在直線為拋物線的對稱軸,所以有AC=CB,AC=2m,拱高OC=0.8m,

  所以O(shè)點坐標為(2,0.8),A點坐標為(0,0),B點坐標為(4,0)。

  由已知,函數(shù)的圖象過(0,0),可得c=0,又由于其圖象過(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解這個方程組,得a=-15b=45 所以,所求的二次函數(shù)的關(guān)系式為y=-15x2+45x。

  問題3:根據(jù)這個函數(shù)關(guān)系式,畫出模板的輪廓線,其圖象是否與前面所畫圖象相同?

  問題4:比較兩種建立直角坐標系的方式,你認為哪種建立直角坐標系方式能使解決問題來得更簡便?為什么?

  (第一種建立直角坐標系能使解決問題來得更簡便,這是因為所設(shè)函數(shù)關(guān)系式待定系數(shù)少,所求出的函數(shù)關(guān)系式簡單,相應地作圖象也容易)

  請同學們閱瀆P18例7。

  三、課堂練習: P18練習1.(1)、(3)2。

  四、綜合運用

  例1.如圖所示,求二次函數(shù)的關(guān)系式。

  分析:觀察圖象可知,A點坐標是(8,0),C點坐標為(0,4)。從圖中可知對稱軸是直線x=3,由于拋物線是關(guān)于對稱軸的軸對稱圖形,所以此拋物線在x軸上的另一交點B的坐標是(-2,0),問題轉(zhuǎn)化為已知三點求函數(shù)關(guān)系式。

  解:觀察圖象可知,A、C兩點的坐標分別是(8,0)、(0,4),對稱軸是直線x=3。因為對稱軸是直線x=3,所以B點坐標為(-2,0)。

  設(shè)所求二次函數(shù)為y=ax2+bx+c,由已知,這個圖象經(jīng)過點(0,4),可以得到c=4,又由于其圖象過(8,0)、(-2,0)兩點,可以得到64a+8b=-44a-2b=-4 解這個方程組,得a=-14b=32

  所以,所求二次函數(shù)的關(guān)系式是y=-14x2+32x+4

  練習: 一條拋物線y=ax2+bx+c經(jīng)過點(0,0)與(12,0),最高點的縱坐標是3,求這條拋物線的解析式。

  五、小結(jié):

  二次函數(shù)的關(guān)系式有幾種形式,函數(shù)的關(guān)系式y(tǒng)=ax2+bx+c就是其中一種常見的形式。二次函數(shù)關(guān)系式的確定,關(guān)鍵在于求出三個待定系數(shù)a、b、c,由于已知三點坐標必須適合所求的函數(shù)關(guān)系式,故可列出三個方程,求出三個待定系數(shù)。

  六、作業(yè)

  1.P19習題 26.2 4.(1)、(3)、5。

  2.選用課時作業(yè)優(yōu)化設(shè)計,

二次函數(shù)教案14

  教學目標:

  1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗。

  2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。

  3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對稱軸、頂點坐標)。

  教學重點:二次函數(shù)y=ax2的圖象的作法和性質(zhì)

  教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系

  教學方法:自主探索,數(shù)形結(jié)合

  教學建議:

  利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質(zhì)的真正理解。

  教學過程:

  一 、認知準備:

  1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?

  2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)

  你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。

  二 、 新授:

  (一)動手實踐:作二次函數(shù) y=x2和y=-x2的圖象

  (同桌二人,南邊作二次函數(shù) y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)

  (二)對照黑板圖象 議一議:(先由學生獨立思考,再小組交流)

  1.你能描述該圖象的形狀嗎?

  2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?

  3. 當x0時,隨著x的增大,y如何變化?當x0時呢?

  4.當x取什么值時,y值最小?最小值是什么?你是如何知道的?

  5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。

  (三) 學生交流:

  1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)

  2.二次函數(shù) y=x2 和y=-x2的'圖象有哪些相同點和不同點?

  3.教師出示同一直角坐標系中的 兩個函數(shù)y=x2 和y=-x2 圖象,根據(jù)圖象回答:

  (1)二次函數(shù) y=x2和y=-x2 的圖象關(guān)于哪條直線對稱?

  (2)兩個圖象關(guān)于哪個點對稱?

  (3)由 y=x2 的圖象如何得到 y=-x2 的圖象?

  (四) 動手做一做:

  1.作出函數(shù)y=2 x2 和 y= -2 x2的圖象

  (同桌二人,南邊作二次函數(shù) y= -2 x2的圖象,北邊作二次函數(shù)y=2 x2的圖象,兩名學生黑板完成)

  2.對照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):

  (1)你能說出二次函數(shù)y=2 x2具有哪些性質(zhì)嗎?

  (2)你能說出二次函數(shù) y= -2 x2具有哪些性質(zhì)嗎?

  (3)你能發(fā)現(xiàn)二次函數(shù)y=a x2的圖象有什么性質(zhì)嗎?

  (學生分小組活動,交流各自的發(fā)現(xiàn))

  3.師生歸納總結(jié)二次函數(shù)y=a x2的圖象及性質(zhì):

  (1)二次函數(shù)y=a x2的圖象是一條拋物線

  (2)性質(zhì)

  a:開口方向:a0,拋物線開口向上,a〈 0,拋物線開口向下[

  b:頂點坐標是(0,0)

  c:對稱軸是y軸

  d:最值 :a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0

  e:增減性:a0時,在對稱軸的左側(cè)(X0),y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(X0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。

  4.應用:(1)說出二次函數(shù)y=1/3 x2 和 y= -5 x2 有哪些性質(zhì)

  (2)說出二次函數(shù)y=4 x2 和 y= -1/4 x2有哪些相同點和不同點?

  三、小結(jié):

  通過本節(jié)課學習,你有哪些收獲?(學生小結(jié))

  1.會畫二次函數(shù)y=a x2的圖象,知道它的圖象是一條拋物線

  2.知道二次函數(shù)y=a x2的性質(zhì):

  a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下

  b:頂點坐標是(0,0)

  c:對稱軸是y軸

  d:最值 :a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0

  e:增減性:a0時,在對稱軸的左側(cè)(X0=,y隨x的增大而減小,在對稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(cè)(X0),y隨x的增大而增大,在對稱軸的右側(cè)(x0),y隨x的增大而減小。

二次函數(shù)教案15

  教學目標:

  1、經(jīng)歷描點法畫函數(shù)圖像的過程;

  2、學會觀察、歸納、概括函數(shù)圖像的特征;

  3、掌握 型二次函數(shù)圖像的特征;

  4、經(jīng)歷從特殊到一般的認識過程,學會合情推理。

  教學重點:

  型二次函數(shù)圖像的描繪和圖像特征的歸納

  教學難點:

  選擇適當?shù)淖宰兞康闹岛拖鄳暮瘮?shù)值來畫函數(shù)圖像,該過程較為復雜。

  教學設(shè)計:

  一、回顧知識

  前面我們在學習正比例函數(shù)、一次函數(shù)和反比例函數(shù)時時如何進一步研究這些函數(shù)的? 先(用描點法畫出函數(shù)的圖像,再結(jié)合圖像研究性質(zhì)。)

  引入:我們仿照前面研究函數(shù)的方法來研究二次函數(shù),先從最特殊的形式即 入手。因此本節(jié)課要討論二次函數(shù) ( )的圖像。

  板書課題:二次函數(shù) ( )圖像

  二、探索圖像

  1、 用描點法畫出二次函數(shù) 和 圖像

 。1) 列表

  引導學生觀察上表,思考一下問題:

  ①無論x取何值,對于 來說,y的值有什么特征?對于 來說,又有什么特征?

  ②當x取 等互為相反數(shù)時,對應的y的值有什么特征?

 。2) 描點(邊描點,邊總結(jié)點的位置特征,與上表中觀察的結(jié)果聯(lián)系起來).

 。3) 連線,用平滑曲線按照x由小到大的`順序連接起來,從而分別得到 和 的圖像。

  2、 練習:在同一直角坐標系中畫出二次函數(shù) 和 的圖像。

  學生畫圖像,教師巡視并輔導學困生。(利用實物投影儀進行講評)

  3、二次函數(shù) ( )的圖像

  由上面的四個函數(shù)圖像概括出:

 。1) 二次函數(shù)的 圖像形如物體拋射時所經(jīng)過的路線,我們把它叫做拋物線,

 。2) 這條拋物線關(guān)于y軸對稱,y軸就是拋物線的對稱軸。

 。3) 對稱軸與拋物線的交點叫做拋物線的頂點。注意:頂點不是與y軸的交點。

 。4) 當 時,拋物線的開口向上,頂點是拋物線上的最低點,圖像在x軸的上方(除頂點外);當 時,拋物線的開口向下,頂點是拋物線上的最高點圖像在x軸的 下方(除頂點外)。

  (最好是用幾何畫板演示,讓學生加深理解與記憶)

  三、課堂練習

  觀察二次函數(shù) 和 的圖像

  (1) 填空:

  拋物線

  頂點坐標

  對稱軸

  位 置

  開口方向

  (2)在同一坐標系內(nèi),拋物線 和拋物線 的位置有什么關(guān)系?如果在同一個坐標系內(nèi)畫二次函數(shù) 和 的圖像怎樣畫更簡便?

  (拋物線 與拋物線 關(guān)于x軸對稱,只要畫出 與 中的一條拋物線,另一條可利用關(guān)于x軸對稱來畫)

  四、例題講解

  例題:已知二次函數(shù) ( )的圖像經(jīng)過點(-2,-3)。

 。1) 求a 的值,并寫出這個二次函數(shù)的解析式。

 。2) 說出這個二次函數(shù)圖像的頂點坐標、對稱軸、開口方向和圖像的位置。

  練習:(1)課本第31頁課內(nèi)練習第2題。

  (2) 已知拋物線y=ax2經(jīng)過點a(-2,-8)。

 。1)求此拋物線的函數(shù)解析式;

 。2)判斷點b(-1,- 4)是否在此拋物線上。

【二次函數(shù)教案】相關(guān)文章:

《二次函數(shù)》教案02-21

二次函數(shù)教案15篇02-20

二次函數(shù)知識點總結(jié)12-19

正弦函數(shù)、余弦函數(shù)圖像教案02-25

《冪函數(shù)》教案11-04

《函數(shù)的應用》教案02-26

初中數(shù)學函數(shù)教案02-23

函數(shù)的最值教案02-26

《對數(shù)函數(shù)》教案03-01