- 相關(guān)推薦
數(shù)學(xué)最簡(jiǎn)二次根式教案
作為一名默默奉獻(xiàn)的教育工作者,往往需要進(jìn)行教案編寫(xiě)工作,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。寫(xiě)教案需要注意哪些格式呢?以下是小編收集整理的數(shù)學(xué)最簡(jiǎn)二次根式教案,希望對(duì)大家有所幫助。
數(shù)學(xué)最簡(jiǎn)二次根式教案1
一、教學(xué)目標(biāo)
1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。
2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。
3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問(wèn)題中的應(yīng)用。
二、教學(xué)重點(diǎn)和難點(diǎn)
1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。
2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。
三、教學(xué)方法
通過(guò)實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過(guò)解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。
四、教學(xué)手段
利用投影儀。
五、教學(xué)過(guò)程
。ㄒ唬┮胄抡n
提出問(wèn)題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的近似值?
了。這樣會(huì)給解決實(shí)際問(wèn)題帶來(lái)方便。
。ǘ┬抡n
由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問(wèn)題創(chuàng)
這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開(kāi)方數(shù)的因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開(kāi)方數(shù)中還有沒(méi)有開(kāi)得盡方的因數(shù)。
總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式:
1。被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式。
2。被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
例1 指出下列根式中的最簡(jiǎn)二次根式,并說(shuō)明為什么。
分析:
說(shuō)明:這里可以向?qū)W生說(shuō)明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。
例2 把下列各式化成最簡(jiǎn)二次根式:
說(shuō)明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開(kāi)方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開(kāi)方數(shù)或被開(kāi)方式分解因數(shù)或分解因式,然后把開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。
例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:
說(shuō)明:
1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開(kāi)方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。
2。要提問(wèn)學(xué)生
問(wèn)題,通過(guò)這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。
通過(guò)例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的.兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問(wèn)題。
注意:
①化簡(jiǎn)時(shí),一般需要把被開(kāi)方數(shù)分解因數(shù)或分解因式。
、诋(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。
。ㄈ┬〗Y(jié)
1。滿足什么條件的根式是最簡(jiǎn)二次根式。
2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。
。ㄋ模┚毩(xí)
1。指出下列各式中的最簡(jiǎn)二次根式:
2。把下列各式化成最簡(jiǎn)二次根式:
六、作業(yè)
教材P。187習(xí)題11。4;A組1;B組1。
七、板書(shū)設(shè)計(jì)
數(shù)學(xué)最簡(jiǎn)二次根式教案2
一、教學(xué)目標(biāo)
1.會(huì)用計(jì)算器求數(shù)的平方根;
2.通過(guò)用計(jì)算器求值及近似值計(jì)算,提高學(xué)生的運(yùn)算能力和動(dòng)手能力;
3.通過(guò)利用計(jì)算器求值體驗(yàn)現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學(xué)習(xí)知識(shí)的興趣.
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):用計(jì)算器求一個(gè)正數(shù)的平方根的程序
教學(xué)難點(diǎn):準(zhǔn)確用計(jì)算器求解一個(gè)正數(shù)的平方根
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
實(shí)物投影儀,計(jì)算器
五、教學(xué)過(guò)程
在前面我們已學(xué)過(guò)平方根的概念,現(xiàn)在已掌握了一些數(shù)的平方根,如4,25,0.01,等數(shù)的平方根,但對(duì)于如:2,3,,0.3的平方根就不能像前面的數(shù)那樣容易求解了,只能用根號(hào)表示。具體的值或近似值如何求解的?在乘方時(shí)曾講過(guò)毅力計(jì)算器求解,今天我們來(lái)研究如何用計(jì)算器求解一個(gè)數(shù)的平方根。
復(fù)習(xí)提問(wèn)學(xué)生有關(guān)乘方如何用計(jì)算器運(yùn)算的步驟。熟悉計(jì)算器基本鍵的功能。
現(xiàn)在講計(jì)算器打開(kāi),按鍵,屏幕上顯示“0”此時(shí)可以進(jìn)行運(yùn)算。
例1、用計(jì)算器求的值。
分析:首先要學(xué)生熟悉計(jì)算器基本鍵的功能,對(duì)于平方根運(yùn)算尤其要掌握“2F”的功能。
解:用計(jì)算器求的步驟如下:
小結(jié):在求解的過(guò)程中,由于要用到這個(gè)鍵上方的功能,這就需要用上方標(biāo)有“2F”的鍵來(lái)轉(zhuǎn)換。
例2、用計(jì)算器求的值。(保留4個(gè)有效數(shù)字)
解:用計(jì)算器求的步驟如下:
小結(jié):由于計(jì)算器的結(jié)果較精確小數(shù)的位數(shù)較多,在遇到開(kāi)方開(kāi)不盡的情況下,如無(wú)特殊說(shuō)明,計(jì)算結(jié)果一律保留四個(gè)有效數(shù)字。
例3、用計(jì)算器求的值。
解:用計(jì)算器求的步驟如下:
因?yàn)橛?jì)算結(jié)果要求保留4個(gè)有效數(shù)字,
例4、用計(jì)算器求1360.57的平方根。
解:用計(jì)算器求1360.57平方根的步驟如下:
因?yàn)橛?jì)算結(jié)果要求保留4個(gè)有效數(shù)字,
小結(jié):這里要注意一個(gè)正數(shù)的.平方根有兩個(gè),且互為相反數(shù),用計(jì)算器求的式這個(gè)數(shù)的算術(shù)平方根。
例5、用計(jì)算器求值:
分析:本題是由加、減、乘方、開(kāi)方運(yùn)算的混合運(yùn)算題,由于計(jì)算器能自動(dòng)識(shí)別運(yùn)算順序,故按鍵順序與書(shū)寫(xiě)順序完全一致。
解:按鍵的順序是:
顯示612.65685
≈612.7
練習(xí):
求下列正數(shù)的算術(shù)平方根:
。1)49;(2)0.81;(3)1.5376;?(4)5;(6)260;
。7);(8)101.38
六、總結(jié)
利用計(jì)算器求解既快又精確,操作時(shí)要嚴(yán)格按照步驟執(zhí)行。特別注意要用到第二功能鍵,首先要先按“2F”在按需要的鍵。由于各種計(jì)算器的鍵的功能各不相同,因此要注意操作順序,查看說(shuō)明書(shū)熟悉各鍵的具體功能。
八、作業(yè)
教材A組1、2、3
九、 板書(shū)設(shè)計(jì)
數(shù)學(xué)最簡(jiǎn)二次根式教案3
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數(shù)的'因數(shù)是整數(shù),因式是整式;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習(xí)
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
【數(shù)學(xué)最簡(jiǎn)二次根式教案】相關(guān)文章:
二次根式數(shù)學(xué)教案11-26
二次根式教案11-10
二次根式教案6篇02-21
二次根式教案三篇04-12
二次根式教案(15篇)02-16
二次根式教案15篇02-15
精選二次根式教案(通用10篇)09-27
【推薦】二次根式教案3篇10-16
二次根式教案模板10篇10-18