亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學(xué) 百文網(wǎng)手機(jī)站

高一數(shù)學(xué)解題方法技巧

時(shí)間:2022-01-20 16:01:32 數(shù)學(xué) 我要投稿

高一數(shù)學(xué)解題方法技巧匯總

  學(xué)習(xí)數(shù)學(xué),除必須掌握有關(guān)數(shù)學(xué)內(nèi)容的基本知識(shí)外,還必須掌握一定的解題技巧。下面小編為大家?guī)?lái)高一數(shù)學(xué)解題方法技巧匯總,希望大家喜歡!

高一數(shù)學(xué)解題方法技巧匯總

  高一數(shù)學(xué)解題方法技巧 篇1

  一、 數(shù)學(xué)解題方法

  (1) 選擇題、填空題

  選擇題、填空題通稱(chēng)為小題,解答小題的原則為小題不大做,即用各種技巧解答問(wèn)題,常用方法如下。

  做小題有以下幾種基本方法:

  1 回憶法。直接從記憶中取要選擇的內(nèi)容。

  2 直接解答法。多用在數(shù)理科的試題中,根據(jù)已知條件,通過(guò)計(jì)算、作圖或代入選擇依次進(jìn)行驗(yàn)證等途徑,得出正確答案。

  3 淘汰法。把選項(xiàng)中錯(cuò)誤中答案排除,余下的便是正確答案。

  4 猜測(cè)法。5 數(shù)形結(jié)合法。6 特殊值法。

  (2)解答題

  解答題屬于大題,要寫(xiě)出必要的解題過(guò)程與步驟,閱卷時(shí),按步驟給分。常用類(lèi)型方法如下:

  1配方法 通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2 因式分解法因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。

  3 換元法換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

  4 判別式法與韋達(dá)定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

  5 待定系數(shù)法在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6 構(gòu)造法在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱(chēng)為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

  7 反證法反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā)。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  8 面(體)積法平面(立體)幾何中講的面(體)積公式以及由面(體)積公式推出的與面(體)積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面(體)積,而且用它來(lái)證明平面(立體)幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面(體)積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面(體)積方法,它是幾何中的一種常用方法。面(體)積法的特點(diǎn)是把已知和未知各量用面(體)積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面(體)積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

  9 幾何變換法在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的`習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱(chēng)。

  二、考場(chǎng)上解題策略

  數(shù)學(xué)要想考好,必須要有扎實(shí)的基礎(chǔ)知識(shí)和一定量的習(xí)題練習(xí),在此基礎(chǔ)上輔以一些做題方法和考試技巧。高考考的是個(gè)人能力,要求考生不但會(huì)做題還要準(zhǔn)確快速地解答出來(lái),只有這樣才能在規(guī)定的時(shí)間內(nèi)做完并能取得較高的分?jǐn)?shù)。因此,對(duì)于大部分高考生來(lái)說(shuō),在考試時(shí)應(yīng)處理好以下幾個(gè)關(guān)系。

  1、快與準(zhǔn)的關(guān)系

  在目前題量大、時(shí)間緊的情況下,準(zhǔn)字則尤為重要。只有準(zhǔn)才能得分,只有準(zhǔn)你才可不必考慮再花時(shí)間檢查,而快是平時(shí)訓(xùn)練的結(jié)果,不是考場(chǎng)上所能解決的問(wèn)題,一味求快,只會(huì)落得錯(cuò)誤百出。適當(dāng)?shù)芈稽c(diǎn)、準(zhǔn)一點(diǎn),可得多一點(diǎn)分;相反,快一點(diǎn),錯(cuò)一片,花了時(shí)間還得不到分。

  2、審題與解題的關(guān)系

  有的考生對(duì)審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒(méi)有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無(wú)從談起,這樣解題出錯(cuò)自然多。只有耐心仔細(xì)地審題,準(zhǔn)確地把握題目中的關(guān)鍵詞與量(如至少,0,自變量的取值范圍等等),從中獲取盡可能多的信息,才能迅速找準(zhǔn)解題方向。

  3、會(huì)做與得分的關(guān)系

  要將你的解題策略轉(zhuǎn)化為得分點(diǎn),主要靠準(zhǔn)確完整的數(shù)學(xué)語(yǔ)言表述,這一點(diǎn)往往被一些考生所忽視,因此卷面上大量出現(xiàn)會(huì)而不對(duì)對(duì)而不全的情況,考生自己的估分與實(shí)際得分差之甚遠(yuǎn)。如立體幾何論證中的跳步,使很多人丟失1/3以上得分,代數(shù)論證中以圖代證,盡管解題思路正確甚至很巧妙,但是由于不善于把圖形語(yǔ)言準(zhǔn)確地轉(zhuǎn)譯為文字語(yǔ)言,得分少得可憐;對(duì)于許多看似簡(jiǎn)單的題目,許多考生心中有數(shù)卻說(shuō)不清楚,扣分者也不在少數(shù)。只有重視解題過(guò)程的語(yǔ)言表述,會(huì)做的題才能得分。

  4、難題與容易題的關(guān)系

  拿到試卷后,應(yīng)將全卷通覽一遍,一般來(lái)說(shuō)應(yīng)按先易后難、先簡(jiǎn)后繁的順序作答。近年來(lái)考題的順序并不完全是由易到難的順序,因此在答題時(shí)要合理安排時(shí)間,不要在某個(gè)卡住的題上打持久戰(zhàn),那樣既耗費(fèi)時(shí)間又拿不到分,會(huì)做的題又被耽誤了。這幾年,數(shù)學(xué)試題已從一題把關(guān)轉(zhuǎn)為多題把關(guān),因此解答題都設(shè)置了層次分明的臺(tái)階,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會(huì)有咬手的關(guān)卡,看似難做的題也有可得分之處。所以考試中看到容易題不可掉以輕心,看到新面孔的難題不要膽怯,冷靜思考、仔細(xì)分析,定能得到應(yīng)有的分?jǐn)?shù)。

  高一數(shù)學(xué)解題方法技巧 篇2

  1、求數(shù)列通項(xiàng)公式的常用方法有:觀察法、公式法、待定系數(shù)法、疊加法、疊乘法、Sn法、輔助數(shù)列法、歸納猜想法等;

  (1)根據(jù)數(shù)列的前幾項(xiàng),寫(xiě)出它的一個(gè)通項(xiàng)公式,關(guān)鍵在于找出這些項(xiàng)與項(xiàng)數(shù)之間的關(guān)系,常用的方法有觀察法、通項(xiàng)法,轉(zhuǎn)化為特殊數(shù)列法等.

  (2)由Sn求an時(shí),用公式an=Sn-Sn-1要注意n≥2這個(gè)條件,a1應(yīng)由a1=S1來(lái)確定,最后看二者能否統(tǒng)一.

  (3)由遞推公式求通項(xiàng)公式的常見(jiàn)形式有:an+1-an=f(n),

  =f(n),an+1=pan+q,分別用累加法、累乘法、迭代法(或換元法).

  2、數(shù)列的前n項(xiàng)和

  (1)數(shù)列求和的常用方法有:公式法、分組求和法、錯(cuò)位相減法、裂項(xiàng)相消法、倒序求和法等。

  求數(shù)列的前n項(xiàng)和,一般有下列幾種方法:

  (2)等差數(shù)列的前n項(xiàng)和公式:

  Sn==.

  (3)等比數(shù)列的前n項(xiàng)和公式:

 、佼(dāng)q=1時(shí),Sn=.

  ②當(dāng)q≠1時(shí),Sn=.

  (4)倒序相加法:將一個(gè)數(shù)列倒過(guò)來(lái)排列與原數(shù)列相加.主要用于倒序相加后對(duì)應(yīng)項(xiàng)之和有公因子可提的數(shù)列求和.

  (5)錯(cuò)位相減法:適用于一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)相乘構(gòu)成的數(shù)列求和.

  (6)裂項(xiàng)求和法:把一個(gè)數(shù)列分成幾個(gè)可直接求和的數(shù)列.

  方法歸納:①求和的基本思想是“轉(zhuǎn)化”。其一是轉(zhuǎn)化為等差、等比數(shù)列的求和,或者轉(zhuǎn)化為求自然數(shù)的方冪和,從而可用基本求和公式;其二是消項(xiàng),把較復(fù)雜的數(shù)列求和轉(zhuǎn)化為求不多的幾項(xiàng)的和。

 、趯(duì)通項(xiàng)中含有(-1)n的數(shù)列,求前n項(xiàng)和時(shí),應(yīng)注意討論n的奇偶性。

 、鄣剐蛳嗉雍湾e(cuò)位相減法是課本中分別推導(dǎo)等差、等比數(shù)列前n項(xiàng)和用到的方法,在復(fù)習(xí)中應(yīng)給予重視。

【高一數(shù)學(xué)解題方法技巧匯總】相關(guān)文章:

考研數(shù)學(xué)解題技巧與方法指南12-12

中考數(shù)學(xué)備考方法及解題技巧08-14

中考數(shù)學(xué)選擇題的解題方法與解題技巧08-14

高考數(shù)學(xué)解題訓(xùn)練方法與技巧匯集11-08

中考數(shù)學(xué)壓軸題解題技巧及備考方法08-17

考研數(shù)學(xué)有哪些解題方法12-20

高考文科數(shù)學(xué)解題技巧08-25

高考數(shù)學(xué)快速解題技巧08-25

高考數(shù)學(xué)函數(shù)解題技巧08-25

高考數(shù)學(xué)導(dǎo)數(shù)解題技巧08-25