高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享(通用7篇)
總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,為此要我們寫(xiě)一份總結(jié)。你所見(jiàn)過(guò)的總結(jié)應(yīng)該是什么樣的?下面是小編為大家整理的高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇1
1、函數(shù)知識(shí):
基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2、向量知識(shí):
向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問(wèn)題。
3、不等式知識(shí):
突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價(jià)轉(zhuǎn)化能力和分類(lèi)討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。
4、立體幾何知識(shí):
20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。
5、解析幾何知識(shí):
小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。
6、導(dǎo)數(shù)知識(shí):
導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見(jiàn)函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。
7、開(kāi)放型創(chuàng)新題:
答案不,或是邏輯推理題,以及解答題中的開(kāi)放型試題的考查,都是重點(diǎn),理科13,文科14題。
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇2
反比例函數(shù)
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1、過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇3
1、函數(shù)的奇偶性
。1)若f(x)是偶函數(shù),那么f(x)=f(—x);
。2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);
。4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
。5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2、復(fù)合函數(shù)的有關(guān)問(wèn)題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。
。2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3、函數(shù)圖像(或方程曲線的對(duì)稱(chēng)性)
(1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;
。2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對(duì)稱(chēng)曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
。4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線C2方程為:f(2a—x,2b—y)=0;
。5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱(chēng);
。6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對(duì)稱(chēng);
4、函數(shù)的周期性
(1)y=f(x)對(duì)x∈R時(shí),f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
。2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);
。3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);
。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);
。5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);
。6)y=f(x)對(duì)x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符號(hào)由口訣“同正異負(fù)”記憶;(4)a log a N= N(a>0,a≠1,N>0);
8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)、
11、處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;
12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題
13、恒成立問(wèn)題的處理方法:
。1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇4
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱(chēng)圖形,因?yàn)樗鼈兓榉春瘮?shù)。
(1)對(duì)數(shù)函數(shù)的'定義域?yàn)榇笥?的實(shí)數(shù)集合。
(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。
。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
。5)顯然對(duì)數(shù)函數(shù)。
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇5
1、“包含”關(guān)系—子集
注意:有兩種可能
。1)A是B的一部分;
。2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄?B,B?C,那么A?C
、苋绻鸄?B同時(shí)B?A那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n—1個(gè)真子集
4、集合與元素
一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來(lái)說(shuō),是它的一個(gè)元素;而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見(jiàn),是集合還是元素,并不是絕對(duì)的。
知識(shí)點(diǎn)2、解集合問(wèn)題的關(guān)鍵
解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合,比如用數(shù)軸來(lái)表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇6
【基本初等函數(shù)】
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand)。
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
。ǘ┲笖(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享 篇7
知識(shí)點(diǎn)總結(jié)
本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:
(1)定義法
(2)復(fù)合函數(shù)分析法
(3)導(dǎo)數(shù)證明法
(4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法
(1)描點(diǎn)法
(2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱(chēng)變換、翻折變換。
常見(jiàn)考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫(xiě)成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。
3、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)一定是非奇非偶函數(shù)。
【高一數(shù)學(xué)必修一必考知識(shí)點(diǎn)總結(jié)分享(通用7篇)】相關(guān)文章:
高一數(shù)學(xué)必修一知識(shí)點(diǎn)的總結(jié)01-25
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納10-09
高一物理必修一知識(shí)點(diǎn)整理分享08-04
高一數(shù)學(xué)必修一知識(shí)點(diǎn)難點(diǎn)精選最全5篇分享11-12
高一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)分享10-21
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納6篇10-14
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(精選9篇)01-04