八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)提綱
在我們上學(xué)期間,看到知識(shí)點(diǎn),都是先收藏再說吧!知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。還在苦惱沒有知識(shí)點(diǎn)總結(jié)嗎?下面是小編精心整理的八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)提綱,希望對(duì)大家有所幫助。
一、軸對(duì)稱圖形
1、把一個(gè)圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個(gè)圖形就叫做軸對(duì)稱圖形。這條直線就是它的對(duì)稱軸。這時(shí)我們也說這個(gè)圖形關(guān)于這條直線(成軸)對(duì)稱。
2、把一個(gè)圖形沿著某一條直線折疊,如果它能與另一個(gè)圖形完全重合,那么就說這兩個(gè)圖關(guān)于這條直線對(duì)稱。這條直線叫做對(duì)稱軸。折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)
3、軸對(duì)稱圖形和軸對(duì)稱的區(qū)別與聯(lián)系
4、軸對(duì)稱的性質(zhì)
�、訇P(guān)于某直線對(duì)稱的兩個(gè)圖形是全等形。
�、谌绻麅蓚€(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
�、圯S對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
�、苋绻麅蓚€(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
二、線段的垂直平分線
1、經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2、線段垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等
3、與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上
三、用坐標(biāo)表示軸對(duì)稱小結(jié):
1、在平面直角坐標(biāo)系中,關(guān)于x軸對(duì)稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)、關(guān)于y軸對(duì)稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等、
2、三角形三條邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等
四、(等腰三角形)知識(shí)點(diǎn)回顧
1、等腰三角形的性質(zhì)
�、�、等腰三角形的兩個(gè)底角相等。(等邊對(duì)等角)
②、等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(等角對(duì)等邊)
五、(等邊三角形)知識(shí)點(diǎn)回顧
1、等邊三角形的性質(zhì):等邊三角形的三個(gè)角都相等,并且每一個(gè)角都等于600。
2、等邊三角形的判定:
�、偃齻€(gè)角都相等的三角形是等邊三角形。
�、谟幸粋€(gè)角是600的等腰三角形是等邊三角形。
3、在直角三角形中,如果一個(gè)銳角等于300,那么它所對(duì)的直角邊等于斜邊的一半。
①、等腰三角形的性質(zhì)
定理:等腰三角形的兩個(gè)底角相等(簡稱:等邊對(duì)等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60°。
②、等腰三角形的其他性質(zhì):
(1)等腰直角三角形的兩個(gè)底角相等且等于45°
(2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
(3)等腰三角形的三邊關(guān)系:設(shè)腰長為a,底邊長為b,則
(4)等腰三角形的三角關(guān)系:設(shè)頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=
�、邸⒌妊切蔚呐卸�
等腰三角形的判定定理及推論:
定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡稱:等角對(duì)等邊)。這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等。
推論1:三個(gè)角都相等的三角形是等邊三角形
推論2:有一個(gè)角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半。
�、堋⑷切沃械闹形痪€
連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。
(2)要會(huì)區(qū)別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的.一半。
三角形中位線定理的作用:
位置關(guān)系:可以證明兩條直線平行。
數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。
常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:
結(jié)論1:三條中位線組成一個(gè)三角形,其周長為原三角形周長的一半。
結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。
結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。
結(jié)論4:三角形一條中線和與它相交的中位線互相平分。
結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對(duì)的三角形的頂角相等。
學(xué)習(xí)困難的原因
1、學(xué)習(xí)自覺性較差
初中生學(xué)習(xí)自覺性較差,缺少解題的積極性,解題時(shí)不注重步驟、過程。
2、學(xué)習(xí)意志薄弱
數(shù)學(xué)的邏輯性和抽象性很強(qiáng),知識(shí)間聯(lián)系緊密,對(duì)學(xué)生的靈活應(yīng)用能力,分析能力要求很強(qiáng)。如果學(xué)生對(duì)前面所學(xué)的知識(shí)掌握不好或未理解的話,就會(huì)直接影響深一層次內(nèi)容的學(xué)習(xí),造成知識(shí)脫節(jié),跟不上集體學(xué)習(xí)的進(jìn)程,在加在自身的毅力薄弱。其結(jié)果往往就會(huì)產(chǎn)生厭學(xué)情緒,放棄數(shù)學(xué)的學(xué)習(xí)。
3、無興趣學(xué)習(xí)或興趣低
一部分學(xué)生一開始就沒有學(xué)好數(shù)學(xué),導(dǎo)致基礎(chǔ)不好,久而久之導(dǎo)致惡性循環(huán);還有些學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒用,選擇放棄選讀,因此成績變得連“過得去”也難以維持。
4、沒有養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣
有些學(xué)生邊學(xué)邊玩,注意力不集中,或是思維單一,不能橫向思考或縱深思考;又或者不聽不記,思維懶惰,粗心大意、馬虎等等都是造成錯(cuò)誤率高的重要原因。
所以同學(xué)們要注意自己是否存在以上問題,要想辦法及時(shí)解決。
數(shù)學(xué)的概念
數(shù)學(xué)概念是人腦對(duì)現(xiàn)實(shí)對(duì)象的數(shù)量關(guān)系和空間形式的本質(zhì)特征的一種反映形式,即一種數(shù)學(xué)的思維形式。在數(shù)學(xué)中,作為一般的思維形式的判斷與推理,以定理、法則、公式的方式表現(xiàn)出來,而數(shù)學(xué)概念則是構(gòu)成它們的基礎(chǔ)。正確理解并靈活運(yùn)用數(shù)學(xué)概念,是掌握數(shù)學(xué)基礎(chǔ)知識(shí)和運(yùn)算技能、發(fā)展邏輯論證和空間想象能力的前提。
【八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)提綱】相關(guān)文章:
數(shù)學(xué)八年級(jí)知識(shí)點(diǎn)提綱08-29
數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)提綱01-21
數(shù)學(xué)旋轉(zhuǎn)的知識(shí)點(diǎn)提綱08-27
數(shù)學(xué)八年級(jí)上冊(cè)知識(shí)點(diǎn)12-07
數(shù)學(xué)必修五數(shù)列知識(shí)點(diǎn)提綱10-15
七年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)提綱11-29
數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)08-02