亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

二次根式教案

時間:2023-04-05 14:29:17 教案大全 我要投稿

【推薦】二次根式教案四篇

  作為一位優(yōu)秀的人民教師,往往需要進行教案編寫工作,通過教案準備可以更好地根據(jù)具體情況對教學(xué)進程做適當?shù)谋匾恼{(diào)整。那要怎么寫好教案呢?以下是小編為大家整理的二次根式教案4篇,歡迎大家分享。

【推薦】二次根式教案四篇

二次根式教案 篇1

  教學(xué)目標

  1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學(xué)重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

  教學(xué)過程設(shè)計

  一、復(fù)習

  1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的.取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復(fù)習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

二次根式教案 篇2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的除法法則及其逆用,最簡二次根式的概念。

  2.內(nèi)容解析

  二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學(xué)習了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).

  基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

  二、目標和目標解析

  1.教學(xué)目標

  (1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

  (2)會進行簡單的二次根式的除法運算;

  (3) 理解最簡二次根式的概念.

  2.目標解析

  (1)學(xué)生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

  (2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.

  (3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.

  三、教學(xué)問題診斷分析

  本節(jié)內(nèi)容主要是在做二次根式的.除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向.

  本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

  四、教學(xué)過程設(shè)計

  1.復(fù)習提問,探究規(guī)律

  問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

  師生活動 學(xué)生回答。

  【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

  五、目標檢測設(shè)計

二次根式教案 篇3

  教學(xué)設(shè)計思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。

  教學(xué)目標

  知識與技能

  1.知道什么是二次根式,并會用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過程與方法

  通過二次根式的概念和性質(zhì)的學(xué)習,培養(yǎng)邏輯思維能力;

  情感態(tài)度價值觀

  1.經(jīng)歷將現(xiàn)實問題符號化的.過程,發(fā)展應(yīng)用的意識;

  2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

  教學(xué)重點和難點

  重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點:確定二次根式中字母的取值范圍。

  教學(xué)方法

  啟發(fā)式、講練結(jié)合

  教學(xué)媒體

  多媒體

  課時安排

  1課時

二次根式教案 篇4

  一、教學(xué)目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習使學(xué)生進一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的'特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習和作業(yè)

  練習:

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習題11.1;A組1;B組1.

  六、板書設(shè)計

【二次根式教案】相關(guān)文章:

二次根式教案01-09

二次根式教案11-10

二次根式數(shù)學(xué)教案11-26

二次根式教案6篇02-21

二次根式教案三篇04-12

二次根式教案15篇02-15

二次根式教案(15篇)02-16

精選二次根式教案(通用10篇)09-27

二次根式教案(集合15篇)02-27

數(shù)學(xué)最簡二次根式教案12-30