初三數學知識點總結15篇(優(yōu))
總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,它是增長才干的一種好辦法,讓我們一起認真地寫一份總結吧?偨Y怎么寫才不會流于形式呢?以下是小編精心整理的初三數學知識點總結,希望對大家有所幫助。
初三數學知識點總結1
一、二次函數概念:
a0)b,c是常數
1.二次函數的概念:一般地,形如yax2bxc(a,的函數,叫做二次函數。這c可以為零.二次函數的定義域是全體實里需要強調:和一元二次方程類似,二次項系數a0,而b,數.
2.二次函數yax2bxc的結構特征:
、诺忍栕筮吺呛瘮担疫吺顷P于自變量x的二次式,x的最高次數是2.b,c是常數,a是二次項系數,b是一次項系數,c是常數項.
、芶,二、二次函數的基本形式
1.二次函數基本形式:yax2的性質:a的絕對值越大,拋物線的開口越小。
a的符號a0開口方向頂點坐標對稱軸向上00,00,性質x0時,y隨x的增大而增大;x0時,y隨y軸x的增大而減小;x0時,y有最小值0.x0時,y隨x的增大而減小;x0時,y隨a0向下y軸x的增大而增大;x0時,y有最大值0.
2.yax2c的性質:上加下減。
a的符號a0開口方向頂點坐標對稱軸向上c0,c0,性質x0時,y隨x的增大而增大;x0時,y隨y軸x的增大而減;x0時,y有最小值c.x0時,y隨x的增大而減;x0時,y隨a0向下y軸x的增大而增大;x0時,y有最大值c.
3.yaxh的性質:左加右減。
2a的符號a0開口方向頂點坐標對稱軸向上0h,0h,性質xh時,y隨x的增大而增大;xh時,y隨X=hx的增大而減小;xh時,y有最小值0.xh時,y隨x的增大而減小;xh時,y隨a02向下X=hx的增大而增大;xh時,y有最大值0.
4.yaxhk的性質:
a的符號開口方向頂點坐標對稱軸性質a0向上h,kh,kX=hxh時,y隨x的增大而增大;xh時,y隨x的增大而減;xh時,y有最小值k.xh時,y隨x的增大而減;xh時,y隨a0向下X=hx的增大而增大;xh時,y有最大值k.
三、二次函數圖象的平移
1.平移步驟:
方法一:
、艑佄锞解析式轉化成頂點式yaxhk,確定其頂點坐標h,k;
⑵保持拋物線yax2的形狀不變,將其頂點平移到h,k處,具體平移方法如下:
向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k
畫草圖時應抓住以下幾點:開口方向,對稱軸,頂點,與x軸的交點,與y軸的交點.
六、二次函數yax2bxc的性質
b4acb2b1.當a0時,拋物線開口向上,對稱軸為x,頂點坐標為,.
2a4a2a當xbbb時,y隨x的增大而減;當x時,y隨x的增大而增大;當x時,y有最小2a2a2a4acb2值.
4ab4acb2bb2.當a0時,拋物線開口向下,對稱軸為x,頂點坐標為,時,y隨.當x2a4a2a2a4acb2bb.x的增大而增大;當x時,y隨x的增大而減。划攛時,y有最大值
2a2a4a
七、二次函數解析式的表示方法
1.一般式:yax2bxc(a,b,c為常數,a0);
2.頂點式:ya(xh)2k(a,h,k為常數,a0);
3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點的橫坐標).
注意:任何二次函數的`解析式都可以化成一般式或頂點式,但并非所有的二次函數都可以寫成交點式,只有拋物線與x軸有交點,即b24ac0時,拋物線的解析式才可以用交點式表示.二次函數解析式的這三種形式可以互化.
八、二次函數的圖象與各項系數之間的關系
1.二次項系數a
二次函數yax2bxc中,a作為二次項系數,顯然a0.
、女攁0時,拋物線開口向上,a的值越大,開口越小,反之a的值越小,開口越大;
、飘攁0時,拋物線開口向下,a的值越小,開口越小,反之a的值越大,開口越大.
總結起來,a決定了拋物線開口的大小和方向,a的正負決定開口方向,a的大小決定開口的大。
2.一次項系數b
在二次項系數a確定的前提下,b決定了拋物線的對稱軸.
、旁赼0的前提下,當b0時,當b0時,當b0時,b0,即拋物線的對稱軸在y軸左側;2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的右側.2a⑵在a0的前提下,結論剛好與上述相反,即當b0時,當b0時,當b0時,b0,即拋物線的對稱軸在y軸右側;2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的左側.2a
總結起來,在a確定的前提下,b決定了拋物線對稱軸的位置.
ab的符號的判定:對稱軸xb在y軸左邊則ab0,在y軸的右側則ab0,概括的說就是“左同2a右異”總結:
3.常數項c
、女攃0時,拋物線與y軸的交點在x軸上方,即拋物線與y軸交點的縱坐標為正;
⑵當c0時,拋物線與y軸的交點為坐標原點,即拋物線與y軸交點的縱坐標為0;
、钱攃0時,拋物線與y軸的交點在x軸下方,即拋物線與y軸交點的縱坐標為負.總結起來,c決定了拋物線與y軸交點的位置.
b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數解析式的確定:
根據已知條件確定二次函數解析式,通常利用待定系數法.用待定系數法求二次函數的解析式必須根據題目的特點,選擇適當的形式,才能使解題簡便.一般來說,有如下幾種情況:
1.已知拋物線上三點的坐標,一般選用一般式;
2.已知拋物線頂點或對稱軸或最大(小)值,一般選用頂點式;
3.已知拋物線與x軸的兩個交點的橫坐標,一般選用兩根式;
4.已知拋物線上縱坐標相同的兩點,常選用頂點式.
九、二次函數圖象的對稱
二次函數圖象的對稱一般有五種情況,可以用一般式或頂點式表達
1.關于x軸對稱
yax2bxc關于x軸對稱后,得到的解析式是yax2bxc;
yaxhk關于x軸對稱后,得到的解析式是yaxhk;
2.關于y軸對稱
yax2bxc關于y軸對稱后,得到的解析式是yax2bxc;
22yaxhk關于y軸對稱后,得到的解析式是yaxhk;
3.關于原點對稱
yax2bxc關于原點對稱后,得到的解析式是yax2bxc;yaxhk關于原點對稱后,得到的解析式是yaxhk;
4.關于頂點對稱(即:拋物線繞頂點旋轉180°)
2222b2yaxbxc關于頂點對稱后,得到的解析式是yaxbxc;
2a22yaxhk關于頂點對稱后,得到的解析式是yaxhk.n對稱
5.關于點m,n對稱后,得到的解析式是yaxh2m2nkyaxhk關于點m,根據對稱的性質,顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此a永遠不變.求拋物線的對稱拋物線的表達式時,可以依據題意或方便運算的原則,選擇合適的形式,習慣上是先確定原拋物線(或表達式已知的拋物線)的頂點坐標及開口方向,再確定其對稱拋物線的頂點坐標及開口方向,然后再寫出其對稱拋物線的表達式.
十、二次函數與一元二次方程:
1.二次函數與一元二次方程的關系(二次函數與x軸交點情況):
一元二次方程ax2bxc0是二次函數yax2bxc當函數值y0時的特殊情況.圖象與x軸的交點個數:
①當b24ac0時,圖象與x軸交于兩點Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次
b24ac方程axbxc0a0的兩根.這兩點間的距離ABx2x1.
a2
②當0時,圖象與x軸只有一個交點;
③當0時,圖象與x軸沒有交點.
1"當a0時,圖象落在x軸的上方,無論x為任何實數,都有y0;
2"當a0時,圖象落在x軸的下方,無論x為任何實數,都有y0.
2.拋物線yax2bxc的圖象與y軸一定相交,交點坐標為(0,c);
3.二次函數常用解題方法總結:
、徘蠖魏瘮档膱D象與x軸的交點坐標,需轉化為一元二次方程;
、魄蠖魏瘮档淖畲螅ㄐ。┲敌枰门浞椒▽⒍魏瘮涤梢话闶睫D化為頂點式;
、歉鶕䦂D象的位置判斷二次函數yax2bxc中a,b,c的符號,或由二次函數中a,b,c的符號判斷圖象的位置,要數形結合;
⑷二次函數的圖象關于對稱軸對稱,可利用這一性質,求和已知一點對稱的點坐標,或已知與x軸的一個交點坐標,可由對稱性求出另一個交點坐標.
、膳c二次函數有關的還有二次三項式,二次三項式ax2bxc(a0)本身就是所含字母x的二次函數;下面以a0時為例,揭示二次函數、二次三項式和一元二次方程之間的內在聯系:
0拋物線與x軸有兩個交點0二次三項式的值可正、可零、可負二次三項式的值為非負二次三項式的值恒為正一元二次方程有兩個不相等實根一元二次方程有兩個相等的實數根一元二次方程無實數根.0拋物線與x軸只有一個交點拋物線與x軸無交點y=2x2y=x2y=3(x+4)2二次函數圖像參考:
y=3x2y=3(x-2)2y=x22
y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數的應用
剎車距離二次函數應用何時獲得最大利潤
最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2
初三數學知識點總結2
定義
只含有一個未知數,且未知數的最高次數是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle―variable quadratice quation)。
一元二次方程有三個特點:
(1)含有一個未知數;
。2)且未知數的最高次數是2;
。3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為ax2+bx+c=0(a0)的形式,則這個方程就為一元二次方程。里面要有等號,且分母里不含未知數。
補充說明
1、方程的'兩根與方程中各數有如下關系:X1+X2=―b/a,X1X2=c/a(也稱韋達定理)。
2、方程兩根為x1,x2時,方程為:x2―(x1+x2)X+x1x2=0(根據韋達定理逆推而得)。
3、在系數a0的情況下,b2―4ac0時有2個不相等的實數根,b2―4ac=0時有兩個相等的實數根,b2―4ac0時無實數根。(在復數范圍內有兩個復數根)。
一般式
ax2+bx+c=0(a、b、c是實數,a0)
例如:x2+2x+1=0
配方式
a(x+b/2a)2=(b2―4ac)/4a
兩根式(交點式)
a(x―x1)(x―x2)=0
初三數學知識點總結3
第一:高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函數。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這里重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數列。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。
在里面重點考察兩個方面:一個是證明;一個是計算。
第五:概率和統計。
這一板塊主要是屬于數學應用問題的范疇,當然應該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。
第六:解析幾何。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考復習時,應該重點不等式計算的.方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
第一輪數學復習主要知識點總結2:參數方程定義
一般的,在平面直角坐標系中,如果曲線上任意一點的坐標x,y都是某個變數t的函數x=f(t)、y=g(t)
并且對于t的每一個允許值,由上述方程組所確定的點M(x,y)都在這條曲線上,那么上述方程則為這條曲線的參數方程,聯系x,y的變數t叫做變參數,簡稱參數,相對于參數方程而言,直接給出點的坐標間關系的方程叫做普通方程。(注意:參數是聯系變數x,y的橋梁,可以是一個有物理意義和幾何意義的變數,也可以是沒有實際意義的變數。
第一輪數學復習主要知識點總結3:參數方程
圓的參數方程x=a+rcosθy=b+rsinθ(a,b)為圓心坐標r為圓半徑θ為參數
橢圓的參數方程x=acosθy=bsinθa為長半軸長b為短半軸長θ為參數
雙曲線的參數方程x=asecθ(正割)y=btanθa為實半軸長b為虛半軸長θ為參數
拋物線的參數方程x=2pt?y=2ptp表示焦點到準線的距離t為參數
直線的參數方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經過(x',y'),且傾斜角為a,t為參數
第一輪數學復習主要知識點總結4:幾何
(1)題型穩(wěn)定:近幾年來高考解析幾何試題一直穩(wěn)定在三(或二)個選擇題,一個填空題,一個解答題上,分值約為30分左右, 占總分值的20%左右。
(2)整體平衡,重點突出:對直線、圓、圓錐曲線知識的考查幾乎沒有遺漏,通過對知識的重新組合,考查時既注意全面,更注意突出重點, 對支撐數學科知識體系的主干知識, 考查時保證較高的比例并保持必要深度。近四年新教材高考對解析幾何內容的考查主要集中在如下幾個類型:
、 求曲線方程( 類型確定、類型未定);
、谥本與圓錐曲線的交點問題(含切線問題);
、叟c曲線有關的最(極)值問題;
、芘c曲線有關的幾何證明(對稱性或求對稱曲線、平行、垂直);
⑤探求曲線方程中幾何量及參數間的數量特征;
(3)能力立意,滲透數學思想:一些雖是常見的基本題型,但如果借助于數形結合的思想,就能快速準確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計算量減少,思考量增大。加大與相關知識的聯系(如向量、函數、方程、不等式等),凸現教材中研究性學習的能力要求。加大探索性題型的分量。
初三數學知識點總結4
單項式與多項式
僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數或字母也是單項式。
單項式中的數字因數叫做這個單項式或字母因數的數字系數,簡稱系數。
當一個單項式的系數是1或—1時,“1”通常省略不寫。
一個單項式中,所有字母的指數的和叫做這個單項式的次數。
如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。
1、多項式
有有限個單項式的代數和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類單項式的系數相加或相減,而單項式中的.字母的乘方指數不變。
在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合并同類項后,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。
3、多項式的恒等
對于兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
性質1如果fx==gx,那么,對于任一個數值a,都有fa=ga。
性質2如果fx==gx,那么,這兩個多項式的個同類項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數的和與這兩個數的差的積等于這兩個數的平方差。
初三數學知識點總結5
一、重要概念
1.數的分類及概念數系表:
說明:分類的原則:1)相稱(不重、不漏) 2)有標準
2.非負數:正實數與零的統稱。(表為:x0)
性質:若干個非負數的和為0,則每個非負數均為0。
3.倒數:
①定義及表示法
、谛再|:A.a1/a(a1);B.1/a中,aa1時,1/aD.積為1。
4.相反數:
、俣x及表示法
、谛再|:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:
、俣x(三要素)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數-自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:
、俣x(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
、讴│0,符號││是非負數的標志;
、蹟礱的'絕對值只有一個;
、芴幚砣魏晤愋偷念}目,只要其中有││出現,其關鍵一步是去掉││符號。
二、實數的運算
1.運算法則(加、減、乘、除、乘方、開方)
2.運算定律(五個-加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3.運算順序:A.高級運算到低級運算;B.(同級運算)從左
到右(如5 C.(有括號時)由小到中到大。
三、應用舉例(略)
附:典型例題
1.已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。
初三數學知識點總結6
1.不在同一直線上的三點確定一個圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
12.①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直于經過切點的半徑
15.推論1經過圓心且垂直于切線的直線必經過切點
16.推論2經過切點且垂直于切線的直線必經過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
、.兩圓相交R-rr
④.兩圓內切d=R-rR>r ⑤兩圓內含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的`周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-R-r外公切線長= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=ar a是圓心角的弧度數r >0扇形面積公式s=1/2lr
初三數學復習方法
一、回歸課本,夯實基礎,做好預習。
數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確;靖拍、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,提高學習效率。
二、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自己的思考,這樣聽課的目的就明確了,F在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、建立錯題本,查漏補缺
初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結。每次訂正試卷或作業(yè)時,在錯題旁邊要寫明做錯的原因。
初三數學學習建議
培養(yǎng)良好的學習習慣
1制定計劃。從而使學習目的明確,時間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨練學習意志。
2課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
3專心上課!皩W然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
4及時復習。這是高效率學習的重要一環(huán)。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。
5獨立作業(yè)。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業(yè)練習使學生對所學知識由“會”到“熟”。
6解決疑難。這是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,并經常把容易錯的地方拿來復習強化,作適當的重復性練習,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
7系統小結。這是通過積極思考,達到全面系統深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由“活”到“悟”。
8課外學習。課外學習是課內學習的補充和繼續(xù),包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發(fā)展學生的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
初三數學知識點總結7
1、二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數;a2aa0。
2、二次根式的乘除:ababa0,b0;aaa0,b0。
3、二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合并。
4、海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc
第二章一元二次方程
1、一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2、一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x2a因式分解法:左邊是兩個因式的乘積,右邊為零。
3、一元二次方程在實際問題中的應用
4、韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2
第三章旋轉
1、圖形的旋轉旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。
2、中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
關于原點對稱的點的坐標第四章圓
1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2、垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;平分弦的直徑垂直弦,并且平分弦所對的.兩條弧。
3、弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所baca對的弦也相等。
4、圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5、點和圓的位置關系點在dr點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
6、圓和圓的位置關系
外離d>R+r外切d=R+r相交R-r
第五章概率初步
1、概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個常數p附近,則常數p叫做事件A的概率。
2、用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計概率
初三上冊數學知識點
1.一元二次方程:在整式方程中,只含個未知數,并且未知數的最高次數是的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項,( )叫做一次項,( )叫做常數項;( )叫做二次項的系數,( )叫做一次項的系數.
2.易錯知識辨析:
(1)判斷一個方程是不是一元二次方程,應把它進行整理,化成一般形式后再進行判斷,注意一元二次方程一般形式中.
(2)用公式法和因式分解的方法解方程時要先化成一般形式.
(3)用配方法時二次項系數要化1。
(4)用直接開平方的方法時要記得取正、負。
初三上冊數學?贾R點
1、必然事件、不可能事件、隨機事件的區(qū)別
2、概率
一般地,在大量重復試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數p附近,那么這個常數p就叫做事件A的概率(probability),記作P(A)= p.
注意:
(1)概率是隨機事件發(fā)生的可能性的大小的數量反映.
(2)概率是事件在大量重復試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同.
3、求概率的方法
(1)用列舉法求概率(列表法、畫樹形圖法)
(2)用頻率估計概率:一大面,可用大量重復試驗中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數而有所不同,是概率的近似值,二者不能簡單地等同。
如何學好初中數學
1、上課以及課前課后
同學們平時的學習時間是在課上,但是大家要樹立一個意識:課前課后也很重要。利用好這些時間,在配合適當的學習方法,學好數學其實并不難。
課前:課前預習很重要,一方面可以先了解上課知識,課上能跟上老師思路,另一方面標記出自己不會的知識點,課上可以根據自己的情況側重去聽。
課上:課上45分鐘,大多數同學都很難保證整節(jié)課集中精神,這就要求我們課前一定要預習,找到自己不會的知識點,課上盡量理解吸收。還是希望大家課上盡量集中精神,跟隨老師的進度了解重點與難點,有利于復習。
課后:課后的時間一般用來復習,大家可以把自己沒有掌握的知識點復習一下,也可以對本節(jié)所學知識進行檢測與鞏固。如果課后復習還存在不理解的地方,大家一定要找老師和同學去問清楚。
有了課前課上課后三個階段,相信大家數學基礎基本差不多了,也希望大家繼續(xù)保持這個習慣。
2、適當練習
大家都知道學習數學最重要的是練習,平時多做一些基礎題可以鍛煉解題熟練度,多做一些中檔題可以熟悉考試題型,過于困難的題目不建議大家多做,可以嘗試解決了解難度,掌握做題技巧,訓練不要盲目,不要鉆牛角尖。做題要學會總結,總結哪些題目經常出現,這可能是中考常考題型。有的同學每天都在做題,輔導書用掉一堆卻沒有提高,這就是盲目做題沒有技巧,沒有總結。
同學們在做題時多關注一下解題思路、方法、技巧等,掌握做題思路,總結做題技巧,這對考試來說至關重要考試中時間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯。
初三數學知識點總結8
不等式的概念
1、不等式:用不等號表示不等關系的式子,叫做不等式。
2、不等式的解集:對于一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。
3、對于一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數軸表示不等式的方法。
不等式基本性質
1、不等式兩邊都加上或減去同一個數或同一個整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個正數,不等號的方向不變。
3、不等式兩邊都乘以或除以同一個負數,不等號的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的`次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢档闹担凶霾坏仁降慕。
、谝粋含有未知數的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數學知識點總結9
扇形周長公式
因為扇形=兩條半徑+弧長
若半徑為R,扇形所對的圓心角為n°,那么扇形周長:
C=2R+nπR÷180
扇形面積公式
在半徑為R的圓中,因為360°的圓心角所對的扇形的面積就是圓面積S=πR^2,所以圓心角為n°的扇形面積
S=nπR^2÷360
▲什么是圓周率?
圓周率是一個常數,是代表圓周和直徑的比例。它是一個無理數,即是一個無限不循環(huán)小數。但在日常生活中,通常都用3.14來代表圓周率去進行計算,即使是工程師或物理學家要進行較精密的計算,也只取值至小數點后約20位。
▲什么是π?
π是第十六個希臘字母,本來它是和圓周率沒有關系的,但大數學家歐拉在一七三六年開始,在書信和論文中都用π來代表圓周率。既然他是大數學家,所以人們也有樣學樣地用π來表圓周率了。但π除了表示圓周率外,也可以用來表示其他事物,在統計學中也能看到它的出現。
圓的面積s = π × r × r
其中,π是周圍率,等于3。14
r是圓的半徑。
圓的周長計算公式為:C=2πR 。C代表圓的周長,r代表圓的半徑。圓的面積公式為:S=πR2(R的平方) 。S代表圓的面積,r為圓的半徑。
橢圓周長計算公式
橢圓周長公式:L=2πb+4(a—b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
橢圓面積計算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
1、有關的計算:
(1)圓的周長C=2πR;(2)弧長L= ;(3)圓的面積S=πR2。
。4)扇形面積S扇形= ;
。5)弓形面積S弓形=扇形面積SAOB±ΔAOB的面積。(如圖)
2、圓柱與圓錐的側面展開圖:
(1)圓柱的側面積:S圓柱側=2πrh; (r:底面半徑;h:圓柱高)
。2)圓錐的側面積:S圓錐側= =πrR。 (L=2πr,R是圓錐母線長;r是底面半徑)
描述定義:在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A所形成的圖形叫做圓。固定的端點O叫圓心。線段OA叫做半徑。
集合定義:平面上到定點的距離等于定長的'所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2、圓的表示方法:以O為圓心的圓記做⊙O,讀作圓O。
3、圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
4、半徑:圓心與圓上任意一點所連的線段叫半徑。直徑:經過圓心的弦叫直徑。
5、圓心角:頂點在圓心上的角叫圓心角。
6、圓周角:頂點在圓上,并且兩邊都與圓相交的角叫圓周角。
7、弦心距:圓心到弦的垂線段的長。
初三數學知識點總結10
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若這個條件不成立,則不是二次根式;
。2)是一個重要的非負數,即; ≥0。
2、重要公式:
3、積的算術平方根:
積的算術平方根等于積中各因式的算術平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
(1)利用近似值比大;
。2)把二次根式的系數移入二次根號內,然后比大。
。3)分別平方,然后比大小。
6、商的算術平方根:,
商的算術平方根等于被除式的算術平方根除以除式的算術平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
。1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
、俦婚_方數的因數是整數,因式是整式,
、诒婚_方數中不含能開的盡的因數或因式;
。2)最簡二次根式中,被開方數不能含有小數、分數,字母因式次數低于2,且不含分母;
。3)化簡二次根式時,往往需要把被開方數先分解因數或分解因式;
(4)二次根式計算的最后結果必須化為最簡二次根式。
9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數相同,這幾個二次根式叫做同類二次根式。
10、二次根式的混合運算:
。1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數運算,以前學過的,在有理數范圍內的一切公式和運算律在二次根式的混合運算中都適用;
。2)二次根式的'運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉化為分母有理化或約分更為簡便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數,也可能是含待定字母或特定式子的代數式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當ax2+bx+c=0
。╝≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:
Δ>0 <=>有兩個不等的實根;
Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;
4。平均增長率問題————————應用題的類型題之一(設增長率為x):
。1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。
。2)常利用以下相等關系列方程:第三年=第三年或第一年+第二年+第三年=總和。
第23章旋轉
1、概念:
把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。
旋轉三要素:旋轉中心、旋轉方面、旋轉角
2、旋轉的性質:
。1)旋轉前后的兩個圖形是全等形;
。2)兩個對應點到旋轉中心的距離相等
。3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角
3、中心對稱:
把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應點叫做關于中心的對稱點。
4、中心對稱的性質:
(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。
。2)關于中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
初三數學知識點總結11
圓的全章復習
圓的基礎知識(1)圓的有關概念:
弦,弧,半圓,弓形,弓形高,等。[含同圓等圓),弦心距,直徑等。
(2)圓的確定
圓心決定位置,半徑決定大小,不共線的三點確定一個圓。注意:作圖(兩邊中垂線找交點),外心的位置,外心到三角形各頂點距離等
圓的對稱性:軸對稱,中心對稱,旋轉不變性
2.圓與其它圖形
。1)點與圓三種
(2)直線與圓
相離dr
、僖粭l直線與圓三種相切dr
相交d
r②兩條直線與圓有關的角:圓周角,弦切角,圓外角等比例線段:圓冪定理等
③三條直線與圓即三角形與圓
三角形“四心”的區(qū)別:垂心意義三條高的交點性質等式積:位置銳角三角形:內部直角三角形:直角頂點鈍角三角形:外部必在三角形內部ahabhbchc重心三條中線的交點同一中線上重心到頂點的距離是它到該頂點的對邊距離的2倍外心
1.外接圓的圓心
2.三邊中垂線的交點
3.內切圓的圓心
4.三條角平分線的交點到三角形三頂點距離相等銳角三角形:內部直角三角形:斜邊中點鈍角三角形:外部到三角形三邊距離相等與頂點連線平分該內角必在三角形內部內心
、芩臈l直線與圓為180內切四邊形:對角之和的和相等外切四邊形:兩組對邊
。3)兩圓與直線
兩圓外切時連心線過內公切線切點與該切線垂直。兩圓內切時連心線過切點,垂直于過切點的切線。
兩圓相交時,連心線垂直于公共弦,并且平分公共弦。
3.圓與圓的位置關系:
(1).掌握圓與圓的五種位置關系,類比于點與圓,直線與圓的位置關系,能通過兩圓半徑r1,r2及圓心距d三者的數量關系,判斷兩圓位置關系,或通過位置關系,判斷數量關系。
(2).在數軸上表示當d在不同位置時,兩圓的位置關系。
(3).在證明兩圓的或多圓的圖形時,常加的輔助線:公共弦、公切線;圓心距,連心線。
(4).當兩圓相交時,連心線垂直平分公共弦。當兩圓內切時,連心線垂直于公切線。當兩圓外切時,連心線垂直于內公切線。
(5).公切線是指兩個圓公共的切線,如果兩圓在公切線同旁則稱外公切線,如果兩圓在公切線兩旁則稱內切線。公切線上兩切點間線段的長叫公切線長。(Rr)(外離時)
(6).如圖內公切線長d(Rr)(外離、外切、相交時)外公切線長dd圓心距
R大圓半徑
r小圓半徑
R≥r
2222
內公切線Rr夾角一半sin
d的正弦值
外公切線Rr夾角一半sin
d的正弦值
(7).公切線條數①內含0條0dRr②內切1條dRr③相交2條RrdRr④外切3條dRr⑤外離4條dRr4,定理
。1)垂徑定理及推論:過圓心;垂直弦;平分弦(非直徑);平分優(yōu);平分劣弧;知2求3。
。2)圓心角,弦,弦心距,弧之間關系:同圓等圓中知1得3。
。3)與圓有關的角:圓心角,圓周角,弦切角,圓內角,圓外角,圓內接四邊形外角,內對角,對角
1.一條弧所對圓周角等于它所對的圓心角的一它所對弧度數的一半半,圓周角的度數等于角相等;
2.同弧或等弧所對的圓周圓周角的性質相等的'圓周角所對的弧也相等
3.直徑所對的圓周角是直角,90的圓周角所對的弦是直角
。4)切線的判定、性質:
、倥卸ǎ撼R姷淖C法連半徑,證垂直,判斷切線,“連垂切”或作垂直證d=r
、谛再|:若一條直線滿足過圓心、過切點,垂直于切線中任意兩條,可得另外一條。常見“切連垂”
。5)和圓有關的比例線段:
相交弦定理及推論,切割線定理及推論,圓冪定理
5.和圓有關的計算
。1)求線段
、僦睆、半徑
②垂徑定理:求弦長、弦心距、拱高
、矍芯長、公切線長(外公切線長,內公切線長)
、苤苯侨切蝺惹袌A半徑
⑤任意三角形內切圓半徑與面積、周長的關系
、薜冗吶切蝺惹袌A半徑:外接圓半徑=1:2
、吲c圓有關的比例線段、弦長、切線長等
。2)求角
圓心角,圓周角,弦切角,兩切線夾角,公切線夾角
6.常見輔助線
半徑、直徑、弦心距、“切連垂”、連心線、公共弦、公切線
7.圓中常見圖形
直角三角形等腰三角形圓內接四邊形相似三角形
8.正多邊形和圓
(n2)180正n邊形的內角和為(n2)180有n個相等的內角,每個內角的度數為
n注意:正多邊形的外交和始終為3609.弧長公式:lnR
180nR210.扇形面積公式:3
初三數學知識點總結12
生活中的立體圖形分類
知識點1常見的幾何體及其特征
知識點2幾何體的分類
常見的幾何體不僅可以按柱體、錐體、球分類,也可以按圍成的面分類。分類如下:
提醒:如果對于我們看到的物體,只研究它們的形狀、大小和位置關系,而不考慮顏色、質量、原料等其他性質時,就得到各種幾何體。
知識點3棱柱的相關概念及其特征
1、棱柱的相關概念
在棱柱中,相鄰兩個面的交線叫做棱,相鄰兩個側面的交線叫做側棱。
2、棱柱的特征
、倮庵乃欣忾L都相等
、诶庵纳舷碌酌嫘螤钕嗤
③棱柱的側面形狀是平行四邊形
3、棱柱的分類
根據底面圖形的邊數,將棱柱分為三棱柱、四棱柱、五棱柱、六棱柱......它們底面圖形的.形狀分別為三角形、四邊形、五邊形、六邊形......
4、棱柱中元素之間的關系
底面多邊形的邊數n確定該棱柱是n棱柱,它有2n個頂點,3n條棱,其中有n條側棱,有(n+2)個面,n個側面。
知識點4圓柱與棱柱的異同點
知識點5圖形的構成
1、圖形是由點、線、面構成的,其中面有平面也有曲面;線有直線也有曲面,面與面相交得到線,線與線相交得到點。
2、用運動的觀點看點、線、面、體之間的關系
點動成線:把筆尖看作一個點,當筆尖在紙上移動時,就可畫出線;
線動成面:鐘表上的指針旋轉時可以形成一個圓面;
面動成體:長方形繞它一邊旋轉,形成一個圓柱體
展開與折疊
知識點1正方體的表面展開圖
知識點2棱柱、棱錐的表面展開圖
。1)棱柱的表面展開圖是由兩個相同的多邊形和一些平行四邊形組成的。沿棱柱表面不同的棱剪開,可以得到不同組合方式的表面展開圖。如圖:
。2)棱錐的表面展開圖是由一個多邊形和一些三角形組成的。沿棱錐表面不同的棱剪開,可得到不同組合方式的表面展開圖。
知識點3圓柱、圓錐的表面展開圖
(3)圓柱的表面展開圖是由兩個大小相同的圓和一個長方形組成的,其中長方形的一邊是底面圓的周長,另一邊的長是圓柱的高。
。4)圓錐的表面展開圖是由一個扇形和一個圓組成的,其中扇形的半徑長是圓錐的母線,而扇形的弧長是圓錐底面圓的周長。
截一個幾何體
知識點1截面
用一個平面去截幾何體,截出的面叫做截面,截面形狀通常為三角形、正方向、長方形、梯形、圓、橢圓等,截面的形狀既與被截的幾何體有關,還與截面的角度與方向有關。
知識點2截一個幾何體所得截面的形狀
三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
初三數學知識點總結13
全套教科書包含了課程標準(實驗稿)規(guī)定的“數與代數”“空間與圖形”“統計與概率”“實踐與綜合應用”四個領域的內容,在體系結構的設計上力求反映這些內容之間的聯系與綜合,使它們形成一個有機的整體。
九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標準》的四個領域。本冊書內容分析如下:
第21章二次根式
學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。“二次根式”一章就來認識這種式子,探索它的性質,掌握它的運算。
在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:
注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到
并運用它們進行二次根式的化簡。
“二次根式的加減”一節(jié)先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節(jié)中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內容。
第22章一元二次方程
學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。
本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
“22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對于沒有實數根的一元二次方程,學了“公式法”以后,學生對這個內容會有進一步的理解。
(2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
“22.3實際問題與一元二次方程”一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。
第23章旋轉
學生已經認識了平移、軸對稱,探索了它們的性質,并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉!靶D”一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
“23.1旋轉”一節(jié)首先通過實例介紹旋轉的概念。然后讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉后的圖形的方法。最后舉例說明用旋轉可以進行圖案設計。
“23.2中心對稱”一節(jié)首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關于原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的.方法。
“23.3課題學習圖案設計”一節(jié)讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。
第24章圓
圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質,并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。
“24.1圓”一節(jié)首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結論,并運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。
“24.2與圓有關的位置關系”一節(jié)首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最后介紹圓和圓的位置關系。
“24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。
“24.4弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。
第25章概率初步
將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。
“25.1概率”一節(jié)首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。
“25.2用列舉法求概率”一節(jié)首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
“25.3利用頻率估計概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。
“25.4課題學習鍵盤上字母的排列規(guī)律”一節(jié)讓學生通過這一課題的研究體會概率的廣泛應用。
初三數學知識點總結14
初三數學知識點第一章二次根式
1二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數;aaa0;
2a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x
2a因式分解法:左邊是兩個因式的乘積,右邊為零。3一元二次方程在實際問題中的應用
4韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2第三章旋轉1圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。
2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖
形重合,則兩個圖形關于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度后得到的
圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3關于原點對稱的點的坐標第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所
baca對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5點和圓的'位置關系點在
dr
點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線的交點,為三角形的內心。
7圓和圓的位置關系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個常數p附近,則常數p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=
mnm穩(wěn)定在n3用頻率去估計概率
初三數學知識點總結15
1、配方法:所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角函數等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法:換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a=?0)根的判別式△=b2—4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至解析幾何、三角函數運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法:在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的重要方法之一。
6、構造法:在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的.橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
7、反證法:反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。
用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(。┯/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、等(面或體)積法:平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計算有關的性質定理,不僅可用于計算面積(體積),而且用它來證明(計算)幾何題有時會收到事半功倍的效果。運用面積(體積)關系來證明或計算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。
用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點是把已知和未知各量用面積(體積)公式聯系起來,通過運算達到求證的結果。所以用等(面或體)積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法:在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法:選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。
【初三數學知識點總結】相關文章:
初三數學知識點總結06-18
初三數學圓的知識點總結11-22
初三數學圓知識點總結10-25
初三數學知識點總結07-10
初三數學上冊知識點總結11-18
初三數學上冊知識點總結06-19
關于初三數學知識點總結06-18
初三數學知識點歸納總結06-16
初三數學圓知識點總結歸納06-18
[精]初三數學知識點總結07-30