初三數(shù)學知識點總結合集【15篇】
總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規(guī)律性認識的一種書面材料,它可以促使我們思考,因此十分有必須要寫一份總結哦。我們該怎么去寫總結呢?下面是小編幫大家整理的初三數(shù)學知識點總結,僅供參考,希望能夠幫助到大家。
初三數(shù)學知識點總結1
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個條件不成立,則不是二次根式;
(2)是一個重要的非負數(shù),即; ≥0。
2、重要公式:
3、積的算術平方根:
積的算術平方根等于積中各因式的算術平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
(1)利用近似值比大。
。2)把二次根式的系數(shù)移入二次根號內,然后比大;
。3)分別平方,然后比大小。
6、商的算術平方根:,
商的算術平方根等于被除式的算術平方根除以除式的算術平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡二次根式:
。1)滿足下列兩個條件的二次根式,叫做最簡二次根式,
①被開方數(shù)的因數(shù)是整數(shù),因式是整式,
②被開方數(shù)中不含能開的盡的因數(shù)或因式;
(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母;
。3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;
。4)二次根式計算的最后結果必須化為最簡二次根式。
9、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。
10、二次根式的混合運算:
(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數(shù)運算,以前學過的,在有理數(shù)范圍內的一切公式和運算律在二次根式的`混合運算中都適用;
(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉化為分母有理化或約分更為簡便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數(shù)習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較。还椒m然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當ax2+bx+c=0
。╝≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:
Δ>0 <=>有兩個不等的實根;
Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根;
4.初三數(shù)學二次函數(shù)圖像
對于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關于y軸對稱。
、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關于x軸對稱。
、踶=ax2+bx+c與y=-ax2-bx+c-b2/2a關于頂點對稱。
、躽=ax2+bx+c與y=-ax2+bx-c關于原點中心對稱。(即繞原點旋轉180度后得到的圖形)
對于頂點式:
、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關于y軸對稱,即頂點(h,k)和(-h,k)關于y軸對稱,橫坐標相反、縱坐標相同。
、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關于x軸對稱,即頂點(h,k)和(h,-k)關于x軸對稱,橫坐標相同、縱坐標相反。
、踶=a(x-h)2+k與y=-a(x-h)2+k關于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。
、躽=a(x-h)2+k與y=-a(x+h)2-k關于原點對稱,即頂點(h,k)和(-h,-k)關于原點對稱,橫坐標、縱坐標都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)
初三數(shù)學知識點總結7
1、弧長公式
n°的圓心角所對的弧長l的計算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點:圓柱的計算.
分析:圓柱的側面積=底面周長×高,把相應數(shù)值代入即可求解.
解答:解:圓柱的側面積=2π×3×4=24π.
故選A.
點評:本題考查了圓柱的計算,解題的關鍵是弄清圓柱的'側面積的計算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點E,且AC=2,AE=,CE=1.則弧BD的長是()
A.B.C.D.
考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.
分析:連接OC,先根據勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據弧長公式即可得出結論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學知識點總結8
特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。
當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax+bx+c=0。
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當h>0時,y=a(x-h)的圖象可由拋物線y=ax向右平行移動h個單位得到。
當h<0時,則向xxx移動|h|個單位得到。
當h>0,k>0時,將拋物線y=ax向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)+k的圖象。
當h>0,k<0時,將拋物線y=ax向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。
當h<0,k>0時,將拋物線向xxx移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)+k的圖象。
當h<0,k<0時,將拋物線向xxx移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)+k的圖象。
因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b]/4a)。
3.拋物線y=ax+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小。
4.拋物線y=ax+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c)。
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點間的距離AB=|x-x|。
當△=0.圖象與x軸只有一個交點;當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的'上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0。
5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b)/4a。
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:y=ax+bx+c(a≠0)。
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)+k(a≠0)。
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
初三數(shù)學知識點總結9
1、二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數(shù);a2aa0。
2、二次根式的乘除:ababa0,b0;aaa0,b0。
3、二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
4、海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc
第二章一元二次方程
1、一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。
2、一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x2a因式分解法:左邊是兩個因式的乘積,右邊為零。
3、一元二次方程在實際問題中的應用
4、韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2
第三章旋轉
1、圖形的旋轉旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。
2、中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
關于原點對稱的點的坐標第四章圓
1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2、垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3、弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所baca對的弦也相等。
4、圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5、點和圓的位置關系點在dr點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
6、圓和圓的位置關系
外離d>R+r外切d=R+r相交R-r
第五章概率初步
1、概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2、用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計概率
初三上冊數(shù)學知識點
1.一元二次方程:在整式方程中,只含個未知數(shù),并且未知數(shù)的最高次數(shù)是的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次項,( )叫做一次項,( )叫做常數(shù)項;( )叫做二次項的系數(shù),( )叫做一次項的系數(shù).
2.易錯知識辨析:
(1)判斷一個方程是不是一元二次方程,應把它進行整理,化成一般形式后再進行判斷,注意一元二次方程一般形式中.
(2)用公式法和因式分解的方法解方程時要先化成一般形式.
(3)用配方法時二次項系數(shù)要化1。
(4)用直接開平方的`方法時要記得取正、負。
初三上冊數(shù)學?贾R點
1、必然事件、不可能事件、隨機事件的區(qū)別
2、概率
一般地,在大量重復試驗中,如果事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability),記作P(A)= p.
注意:
(1)概率是隨機事件發(fā)生的可能性的大小的數(shù)量反映.
(2)概率是事件在大量重復試驗中頻率逐漸穩(wěn)定到的值,即可以用大量重復試驗中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同.
3、求概率的方法
(1)用列舉法求概率(列表法、畫樹形圖法)
(2)用頻率估計概率:一大面,可用大量重復試驗中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復試驗中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同。
如何學好初中數(shù)學
1、上課以及課前課后
同學們平時的學習時間是在課上,但是大家要樹立一個意識:課前課后也很重要。利用好這些時間,在配合適當?shù)膶W習方法,學好數(shù)學其實并不難。
課前:課前預習很重要,一方面可以先了解上課知識,課上能跟上老師思路,另一方面標記出自己不會的知識點,課上可以根據自己的情況側重去聽。
課上:課上45分鐘,大多數(shù)同學都很難保證整節(jié)課集中精神,這就要求我們課前一定要預習,找到自己不會的知識點,課上盡量理解吸收。還是希望大家課上盡量集中精神,跟隨老師的進度了解重點與難點,有利于復習。
課后:課后的時間一般用來復習,大家可以把自己沒有掌握的知識點復習一下,也可以對本節(jié)所學知識進行檢測與鞏固。如果課后復習還存在不理解的地方,大家一定要找老師和同學去問清楚。
有了課前課上課后三個階段,相信大家數(shù)學基礎基本差不多了,也希望大家繼續(xù)保持這個習慣。
2、適當練習
大家都知道學習數(shù)學最重要的是練習,平時多做一些基礎題可以鍛煉解題熟練度,多做一些中檔題可以熟悉考試題型,過于困難的題目不建議大家多做,可以嘗試解決了解難度,掌握做題技巧,訓練不要盲目,不要鉆牛角尖。做題要學會總結,總結哪些題目經常出現(xiàn),這可能是中考?碱}型。有的同學每天都在做題,輔導書用掉一堆卻沒有提高,這就是盲目做題沒有技巧,沒有總結。
同學們在做題時多關注一下解題思路、方法、技巧等,掌握做題思路,總結做題技巧,這對考試來說至關重要考試中時間最寶貴,掌握了好的思路、方法、技巧,不僅解題速度快,而且也不容易犯錯。
初三數(shù)學知識點總結10
一、重要概念
1.數(shù)的分類及概念數(shù)系表:
說明:分類的原則:1)相稱(不重、不漏) 2)有標準
2.非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x0)
性質:若干個非負數(shù)的和為0,則每個非負數(shù)均為0。
3.倒數(shù):
、俣x及表示法
②性質:A.a1/a(a1);B.1/a中,aa1時,1/aD.積為1。
4.相反數(shù):
、俣x及表示法
②性質:A.a0時,aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:
①定義(三要素)
、谧饔茫篈.直觀地比較實數(shù)的'大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關系。
6.奇數(shù)、偶數(shù)、質數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:
、俣x(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。
、讴│0,符號││是非負數(shù)的標志;
、蹟(shù)a的絕對值只有一個;
④處理任何類型的題目,只要其中有││出現(xiàn),其關鍵一步是去掉││符號。
二、實數(shù)的運算
1.運算法則(加、減、乘、除、乘方、開方)
2.運算定律(五個-加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3.運算順序:A.高級運算到低級運算;B.(同級運算)從左
到右(如5 C.(有括號時)由小到中到大。
三、應用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。
初三數(shù)學知識點總結11
1.不在同一直線上的三點確定一個圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角
12.①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直于經過切點的半徑
15.推論1經過圓心且垂直于切線的直線必經過切點
16.推論2經過切點且垂直于切線的直線必經過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
③.兩圓相交R-rr
、.兩圓內切d=R-rR>r ⑤兩圓內含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-R-r外公切線長= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr
初三數(shù)學復習方法
一、回歸課本,夯實基礎,做好預習。
數(shù)學的基本概念、定義、公式,數(shù)學知識點之間的內在聯(lián)系,基本的數(shù)學解題思路與方法,是復習的重中之重;貧w課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確;靖拍睢⒐降壤喂陶莆,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,提高學習效率。
二、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自己的思考,這樣聽課的目的就明確了,F(xiàn)在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的`難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數(shù)學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、建立錯題本,查漏補缺
初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統(tǒng)的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結。每次訂正試卷或作業(yè)時,在錯題旁邊要寫明做錯的原因。
初三數(shù)學學習建議
培養(yǎng)良好的學習習慣
1制定計劃。從而使學習目的明確,時間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨練學習意志。
2課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
3專心上課。“學然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環(huán)節(jié)。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
4及時復習。這是高效率學習的重要一環(huán)。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯(lián)系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。
5獨立作業(yè)。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業(yè)練習使學生對所學知識由“會”到“熟”。
6解決疑難。這是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,并經常把容易錯的地方拿來復習強化,作適當?shù)闹貜托跃毩,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
7系統(tǒng)小結。這是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結要在系統(tǒng)復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯(lián)系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由“活”到“悟”。
8課外學習。課外學習是課內學習的補充和繼續(xù),包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發(fā)展學生的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
初三數(shù)學知識點總結12
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點。該點叫做三角形的外心。
三角形的外心的性質:
1、三角形三條邊的垂直平分線的交于一點,該點即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的`,但一個圓的內接三角形卻有無數(shù)個,這些三角形的外心重合;
3、銳角三角形的外心在三角形內;
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數(shù)學知識點總結13
不等式的概念
1、不等式:用不等號表示不等關系的式子,叫做不等式。
2、不等式的解集:對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。
3、對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質
1、不等式兩邊都加上或減去同一個數(shù)或同一個整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個負數(shù),不等號的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的.過程,叫做解不等式組。
4、當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數(shù)學知識點總結14
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的`兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
初三數(shù)學知識點總結15
定義
只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle―variable quadratice quation)。
一元二次方程有三個特點:
(1)含有一個未知數(shù);
(2)且未知數(shù)的最高次數(shù)是2;
。3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為ax2+bx+c=0(a0)的`形式,則這個方程就為一元二次方程。里面要有等號,且分母里不含未知數(shù)。
補充說明
1、方程的兩根與方程中各數(shù)有如下關系:X1+X2=―b/a,X1X2=c/a(也稱韋達定理)。
2、方程兩根為x1,x2時,方程為:x2―(x1+x2)X+x1x2=0(根據韋達定理逆推而得)。
3、在系數(shù)a0的情況下,b2―4ac0時有2個不相等的實數(shù)根,b2―4ac=0時有兩個相等的實數(shù)根,b2―4ac0時無實數(shù)根。(在復數(shù)范圍內有兩個復數(shù)根)。
一般式
ax2+bx+c=0(a、b、c是實數(shù),a0)
例如:x2+2x+1=0
配方式
a(x+b/2a)2=(b2―4ac)/4a
兩根式(交點式)
a(x―x1)(x―x2)=0
【初三數(shù)學知識點總結】相關文章:
初三數(shù)學知識點總結06-18
初三數(shù)學圓的知識點總結11-22
初三數(shù)學圓知識點總結10-25
初三數(shù)學知識點總結07-10
初三數(shù)學上冊知識點總結11-18
初三數(shù)學上冊知識點總結06-19
關于初三數(shù)學知識點總結06-18
初三數(shù)學知識點歸納總結06-16
初三數(shù)學圓知識點總結歸納06-18
[精]初三數(shù)學知識點總結07-30