高一數(shù)學解題的技巧介紹(通用8篇)
高中數(shù)學必修部分 集合與函數(shù)的概念 基本初等函數(shù)I 函數(shù)的應(yīng)用 空間幾何體 點 直線 平面之間的位置 直線與方程 圓與方程 算法初步 統(tǒng)計 概率 三角函數(shù) 平面向量下面小編帶來的高一數(shù)學解題的技巧介紹。
高一數(shù)學解題的技巧介紹 篇1
數(shù)學解題的思維過程 數(shù)學解題的思維過程是指從理解問題開始,經(jīng)過探索思路,轉(zhuǎn)換問題直至解決問題,進行回顧的全過程的思維活動。 對于數(shù)學解題思維過程,G . 波利亞提出了四個階段*(見附錄),即弄清問題、擬定計劃、實現(xiàn)計劃和回顧。這四個階段思維過程的實質(zhì),可以用下列八個字加以概括:理解、轉(zhuǎn)換、實施、反思。 第一階段:理解問題是解題思維活動的開始。 第二階段:轉(zhuǎn)換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。 第三階段:計劃實施是解決問題過程的實現(xiàn),它包含著一系列基礎(chǔ)知識和基本技能的靈活運用和思維過程的具體表達,是解題思維活動的重要組成部分。 第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學思維的一個重要方面,是一個思維活動過程的結(jié)束包含另一個新的思維活動過程的開始。
數(shù)學解題的技巧 為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進一步提高探索的成效,我們必須掌握一些解題的策略。 一切解題的策略的基本出發(fā)點在于變換,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達到解決原題的目的。 基于這樣的認識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。
一、 熟悉化策略所謂熟悉化策略,就是當我們面臨的是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗或解題模式,順利地解出原題。 一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。 常用的途徑有:
(一)、充分聯(lián)想回憶基本知識和題型: 按照波利亞的觀點,在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。
。ǘ⑷轿、多角度分析題意: 對于同一道數(shù)學題,常常可以不同的側(cè)面、不同的角度去認識。因此,根據(jù)自己的知識和經(jīng)驗,適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當構(gòu)造輔助元素: 數(shù)學中,同一素材的題目,常常可以有不同的表現(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。 數(shù)學解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點、線、面、體),構(gòu)造算法,構(gòu)造多項式,構(gòu)造方程(組),構(gòu)造坐標系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價性命題,構(gòu)造反例,構(gòu)造數(shù)學模型等等。
二、簡單化策略 所謂簡單化策略,就是當我們面臨的是一道結(jié)構(gòu)復雜、難以入手的題目時,要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。 簡單化是熟悉化的補充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。 因此,在實際解題時,這兩種策略常常是結(jié)合在一起進行的,只是著眼點有所不同而已。 解題中,實施簡單化策略的途徑是多方面的,常用的有: 尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當分解結(jié)論等。
1、尋求中間環(huán)節(jié),挖掘隱含條件: 在些結(jié)構(gòu)復雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當組合抽去中間環(huán)節(jié)而構(gòu)成的。 因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實現(xiàn)復雜問題簡單化的一條重要途徑。
2、分類考察討論: 在些數(shù)學題,解題的復雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當?shù)姆诸悩藴剩言}分解成一組并列的簡單題,有助于實現(xiàn)復雜問題簡單化。
3、簡單化已知條件: 有些數(shù)學題,條件比較抽象、復雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至暫時撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。
4、恰當分解結(jié)論: 有些問題,解題的主要困難,來自結(jié)論的抽象概括,難以直接和條件聯(lián)系起來,這時,不妨猜想一下,能否把結(jié)論分解為幾個比較簡單的部分,以便各個擊破,解出原題。
三、直觀化策略: 所謂直觀化策略,就是當我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時,要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯(lián)系,找到原題的解題思路。
。ㄒ唬D表直觀: 有些數(shù)學題,內(nèi)容抽象,關(guān)系復雜,給理解題意增添了困難,常常會由于題目的抽象性和復雜性,使正常的思維難以以進行到底。 對于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內(nèi)容形象化,復雜關(guān)系條理化,使思維有相對具體的依托,便于深入思考,發(fā)現(xiàn)解題線索。
。ǘD形直觀: 有些涉及數(shù)量關(guān)系的題目,用代數(shù)方法求解,道路崎嶇曲折,計算量偏大。這時,不妨借助圖形直觀,給題中有關(guān)數(shù)量以恰當?shù)膸缀畏治,拓寬解題思路,找出簡捷、合理的解題途徑。
(三)、圖象直觀: 不少涉及數(shù)量關(guān)系的題目,與函數(shù)的圖象密切相關(guān),靈活運用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。
四、特殊化策略 所謂特殊化策略,就是當我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。
五、一般化策略 所謂一般化策略,就是當我們面臨的是一個計算比較復雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時,要設(shè)法把特殊問題一般化,找出一個能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。
六、整體化策略 所謂整體化策略,就是當我們面臨的是一道按常規(guī)思路進行局部處理難以奏效或計算冗繁的題目時,要適時調(diào)整視角,把問題作為一個有機整體,從整體入手,對整體結(jié)構(gòu)進行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和辦法。
七、間接化策略 所謂間接化策略,就是當我們面臨的是一道從正面入手復雜繁難,或在特定場合甚至找不到解題依據(jù)的題目時,要隨時改變思維方向,從結(jié)論(或問題)的反面進行思考,以便化難為易解出原題。
高一數(shù)學解題的技巧介紹 篇2
高中數(shù)學題目對我們的邏輯思維、空間思維以及轉(zhuǎn)換思維都有著較高要求,其具有較強的推證性和融合性,所以我們在解決高中數(shù)學題目時,必須嚴謹推導各種數(shù)量關(guān)系。很多高中題目都并不是單純的數(shù)量關(guān)系題,其還涉及到空間概念和其他概念,所以我們可以利用數(shù)形結(jié)合法理清題目中的各種數(shù)量關(guān)系,從而有效解決各種數(shù)學問題。
數(shù)形結(jié)合法主要是指將題目中的數(shù)量關(guān)系轉(zhuǎn)化為圖形,或者將圖形轉(zhuǎn)化為數(shù)量關(guān)系,從而將抽象的結(jié)構(gòu)和形式轉(zhuǎn)化為具體簡單的數(shù)量關(guān)系,幫助我們更好解決數(shù)學問題。例如,題目為“有一圓,圓心為O,其半徑為1,圓中有一定點為A,有一動點為P,AP之間夾角為x,過P點做OA垂線,M為其垂足。假設(shè)M到OP之間的距離為函數(shù)f(x),求y=f(x)在[0,?仔]的圖像形狀!
這個題目涉及到了空間概念以及函數(shù)關(guān)系,所以我們在解決這個題目時不能只從一個方面來思考問題,也不能只對題目中的函數(shù)關(guān)系進行深入挖掘。從已知條件可知題目要求我們解決幾何圖形中的函數(shù)問題,所以我們可以利用數(shù)形結(jié)合思想來解決這個問題。首先我們可以根據(jù)已知條件繪出相應(yīng)圖形,如圖1,顯示的是依據(jù)題目中的關(guān)系繪制的圖形。
根據(jù)題目已知條件可知圓的半徑為1,所以O(shè)P=1,∠POM=x,OM=|cos|,然后我們可以建立關(guān)于f(x)的函數(shù)方程,可得所以我們可以計算出其周期為,其中最小值為0,最大值為,根據(jù)這些數(shù)量關(guān)系,我們可以繪制出y=f(x)在[0,?仔]的圖像形狀,如圖2,顯示的是y=f(x)在[0,?仔]的圖像。
高一數(shù)學解題的技巧介紹 篇3
一、《集合與函數(shù)》
內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。
指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。
兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。
二、《立體幾何》
點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。
三、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。
笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復數(shù)求。
解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學。
拓展閱讀:高二文科生數(shù)學學法指導
總的來說,可以分為8大部分:函數(shù)、數(shù)列、立體幾何、解析幾何、排列組合、不等式、平面向量、二項式定理以及統(tǒng)計。其中,尤其以函數(shù)和幾何較為難學,同時也是重點內(nèi)容,要弄清楚它們各自的特點以及相互之間的聯(lián)系,這些都是最基本的內(nèi)容。而要做到這一點,首先就要對課本上的一些基本的概念、定理、公式了如指掌,用的時候才能從容不迫,信手拈來。但是,這些往往也是最容易被忽視的——大家都忙著做一道又一道的習題,買一本又一本厚厚的習題書,哪有時間去看課本?
有些同學可能會想,數(shù)學又不是、,書上的習題又大都極簡單,何必看課本呢?殊不知,課本對于數(shù)學來說,也是很重要的。數(shù)學有20%的基礎(chǔ)題目,只要花上一點點時間把課本好好看看,要拿下這些題易如反掌;反之,要是對一些基本的概念、定理都含混不清,不但基礎(chǔ)題會失分,難題也不可能做得很好,畢竟這些都是基礎(chǔ)啊。數(shù)學的邏輯性、分析性極強,可以說是一種純理性的科學,要求一定要清晰明了,是不太可能出現(xiàn)做出題目卻不知是如何做對的情況的,因而基礎(chǔ)知識十分重要。
其次,相當多的習題自然是必不可少的。在理解了基本的概念以后,必須要做大量的練習,這樣才能鞏固所學到的知識,加深對概念的了解。所謂熟能生巧,數(shù)學最能體現(xiàn)這句話的哲理性。數(shù)學的思維、解題的技巧,只有在做題中摸索,印象才會深刻,運用起來才會得心應(yīng)手。當然,這并不是提倡題海戰(zhàn)術(shù),適量就可,習題做得太多,很容易產(chǎn)生厭煩情緒。最重要的還是選題,一定要選好題、精題。在這一方面,的建議是很值得考慮的,最好買推薦的參考。同時做題還要根據(jù)自己的實際情況。一般而言,要先做基礎(chǔ)題,把基礎(chǔ)打牢固,然后再逐步加深難度,做一些提高性的題目。每一個知識點都要做一定量的上難度的題來鞏固,這樣才能將其牢牢掌握做完每個題之后,要回頭看一遍(尤其是難題),想想做這一題有什么收獲,這樣,就不會做了很多題卻沒有什么效果。
運算也是很重要的一個環(huán)節(jié),與的重要性不相上下。培養(yǎng)一種發(fā)散性思維,尋求解題的多種,當然非常重要。但是,有一些同學,他們具有很強的思維,能夠從多種角度思考問題,可是計算卻不強,平時也不訓練,時往往是找對了卻算錯了答案,非?上А5拇_ 高中政治,繁瑣的運算是令人望而生畏的,但是,在運算過程中你將發(fā)現(xiàn)許多新的問題,而運算也就在訓練中漸漸提高了。因而,數(shù)學方法要與計算并重。一方面,要重視做題方法的訓練,從多角度、多方面去思考問題;同時,也要注意鍛煉計算能力,注重計算的精確性,而不能偏向一方。
總結(jié)。把專題的卷子和綜合的卷子分門別類,每一份都進行認真細致的總結(jié),挑出其中含金量最高的題,同時,“旁征博引”,把曾經(jīng)遇到過的相關(guān)的題目總結(jié)到一起,一道也不放過。這樣總結(jié)下來,一定能對各類題型都能夠了如指掌,對出題者的出題角度也有了準確的把握。通過對上百份的細致歸納總結(jié),很多同學的數(shù)學都有了大幅度的提高。需要強調(diào)的是在總結(jié)試卷的過程中一定要深入下去,千萬不能走形式,只有深入方能有所收獲。在深入的過程中不要在乎時間,有時候,在總結(jié)一道大題時,會把相關(guān)的題型總結(jié)到一起,這項其實是相當繁雜的,絕不等同于弄懂一道題。而做這項的收益也將是巨大的。所以,即使用一個晚上來做這件事也非常值得。千萬不要心情急躁,看見別人一道接一道的做題而不安。
平時的學習要注意以下幾點:
1、按部就班。數(shù)學是環(huán)環(huán)相扣的一門學科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學習的進程。所以,平時學習不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
2、強調(diào)理解。概念、定理、公式要在理解的基礎(chǔ)上。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
3、基本訓練。學習數(shù)學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓練要做到有的放矢。
4、重視平時考試出現(xiàn)的錯誤。訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。
的學習有一個循序漸進的過程,妄想一步登天是不現(xiàn)實的。熟記書本內(nèi)容后將書后習題認真寫好,有些同學可能認為書后習題太簡單不值得做,這種想法是極不可取的,書后習題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
高一數(shù)學解題的技巧介紹 篇4
基礎(chǔ)知識不扎實
初中教學同樣受升學壓力的影響,為了擠出更多的時間復習迎考,擠壓新課學習時間,刪減未列入考試的內(nèi)容或自認為考試不重要的內(nèi)容,造成學生知識結(jié)構(gòu)不完整,基礎(chǔ)知識掌握不扎實,如初中對函數(shù)和平面幾何等內(nèi)容的新課學習時間不夠,學生感到困難,帶著這樣的陰影學生到高中碰到函數(shù)和立體幾何等內(nèi)容的學習就感到恐懼,沒有學就產(chǎn)生了畏難情緒。
學習習慣和方法的指導不夠
初中教學不太關(guān)注對學生學習習慣和方法的指導,忽視對數(shù)學思想方法的培養(yǎng)和滲透(現(xiàn)在學生的認知水平是可以接受的),熱衷于通過大量的練習模仿來掌握解題方法,如對初中二次函數(shù)的學習。
高一數(shù)學解題的技巧介紹 篇5
考點:對于數(shù)列,我對大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分數(shù),如果要是有人能全部做對,我也替你高興,這類題型,主要是考大家對等比等差數(shù)列的理解,包括通項與求和,難度還是有的,其實你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:一般分為證明和計算(包括通項公式、求和、比較大小),解題思路:
證明:就是要求我們證明一個數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個等差數(shù)列或者等比數(shù)列。另一種方法就是應(yīng)用等差中項或者等比中項來證明數(shù)列。計算(通項公式):一般這個題都還是比較簡單的,這類型的題,我只要求大家能掌握其中題目表達式的關(guān)鍵字眼(如出現(xiàn)要用什么方法,如果出現(xiàn)要用什么方法,如果出現(xiàn)如果出現(xiàn)),我相信通項公式對大家來說應(yīng)該是達到駕輕就熟的地步了,希望大家能把握這么容易的分數(shù)。
求和:這種題對文科生來說,應(yīng)該知道我要說什么了吧,王福叉數(shù)列(等比等差數(shù)列)呀!!,三個步驟:乘公比,錯位相減,化系數(shù)為一。光是記住步驟沒有用的,同時我也希望同學們不要眼高手低,不要以為很簡單的,其實真正能算正確的不一定那么容易的`,所以我還是希望大家多加練習,親自操作一下。對理科生來說,也要注意這樣的數(shù)列求和,同時還要掌握一種數(shù)列求和,就是這個數(shù)列求和是將其中的一個等差或等比數(shù)列按照一定的順序抽調(diào)了一部分數(shù)列,然后構(gòu)成一個新的數(shù)列求和,還有就是要注意了如果題目里面涉及到這個的時候,一定要記住數(shù)列相互奇偶性的討論了,非常的重要哈。
比較大。哼@種題目我對大家的要求很低,因為一般都是放縮法的問題,我也不是要求大家非要怎么樣怎么樣的,對這類問題需要我們的基本功底很深,要學會適當?shù)姆糯蠛头判〉膯栴},對這個問題的把握,需要大家對一些經(jīng)常遇到的放縮公式印在腦海里面。
補充:在不是導數(shù)的其他大題中,如果遇到求最值的問題,一般有兩種方法求解,一種是二次函數(shù)求最值,一種就是基本不等式求最值。
高一數(shù)學解題的技巧介紹 篇6
1、“內(nèi)緊外松”,集中注意,消除焦慮怯場
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
2、沉著應(yīng)戰(zhàn),確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態(tài),即發(fā)揮心理學所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵,穩(wěn)拿中低,見機攀高。
3、尋求中間環(huán)節(jié),挖掘隱含條件:
在些結(jié)構(gòu)復雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當組合抽去中間環(huán)節(jié)而構(gòu)成的。
因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實現(xiàn)復雜問題簡單化的一條重要途徑。
高一數(shù)學解題的技巧介紹 篇7
一、 數(shù)學解題方法
(1) 選擇題、填空題
選擇題、填空題通稱為小題,解答小題的原則為小題不大做,即用各種技巧解答問題,常用方法如下。
做小題有以下幾種基本方法:
1 回憶法。直接從記憶中取要選擇的內(nèi)容。
2 直接解答法。多用在數(shù)理科的試題中,根據(jù)已知條件,通過計算、作圖或代入選擇依次進行驗證等途徑,得出正確答案。
3 淘汰法。把選項中錯誤中答案排除,余下的便是正確答案。
4 猜測法。5 數(shù)形結(jié)合法。6 特殊值法。
(2)解答題
解答題屬于大題,要寫出必要的解題過程與步驟,閱卷時,按步驟給分。常用類型方法如下:
1配方法 通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2 因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。
3 換元法換元法是數(shù)學中一個非常重要而且應(yīng)用十分廣泛的解題方法。所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4 判別式法與韋達定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
5 待定系數(shù)法在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
6 構(gòu)造法在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
7 反證法反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā)。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8 面(體)積法平面(立體)幾何中講的面(體)積公式以及由面(體)積公式推出的與面(體)積計算有關(guān)的性質(zhì)定理,不僅可用于計算面(體)積,而且用它來證明平面(立體)幾何題有時會收到事半功倍的效果。運用面(體)積關(guān)系來證明或計算平面幾何題的方法,稱為面(體)積方法,它是幾何中的一種常用方法。面(體)積法的特點是把已知和未知各量用面(體)積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面(體)積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9 幾何變換法在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
二、考場上解題策略
數(shù)學要想考好,必須要有扎實的基礎(chǔ)知識和一定量的習題練習,在此基礎(chǔ)上輔以一些做題方法和考試技巧。高考考的是個人能力,要求考生不但會做題還要準確快速地解答出來,只有這樣才能在規(guī)定的時間內(nèi)做完并能取得較高的分數(shù)。因此,對于大部分高考生來說,在考試時應(yīng)處理好以下幾個關(guān)系。
1、快與準的關(guān)系
在目前題量大、時間緊的情況下,準字則尤為重要。只有準才能得分,只有準你才可不必考慮再花時間檢查,而快是平時訓練的結(jié)果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。適當?shù)芈稽c、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。
2、審題與解題的關(guān)系
有的考生對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關(guān)鍵詞與量(如至少,0,自變量的取值范圍等等),從中獲取盡可能多的信息,才能迅速找準解題方向。
3、會做與得分的關(guān)系
要將你的解題策略轉(zhuǎn)化為得分點,主要靠準確完整的數(shù)學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現(xiàn)會而不對對而不全的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的跳步,使很多人丟失1/3以上得分,代數(shù)論證中以圖代證,盡管解題思路正確甚至很巧妙,但是由于不善于把圖形語言準確地轉(zhuǎn)譯為文字語言,得分少得可憐;對于許多看似簡單的題目,許多考生心中有數(shù)卻說不清楚,扣分者也不在少數(shù)。只有重視解題過程的語言表述,會做的題才能得分。
4、難題與容易題的關(guān)系
拿到試卷后,應(yīng)將全卷通覽一遍,一般來說應(yīng)按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是由易到難的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打持久戰(zhàn),那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數(shù)學試題已從一題把關(guān)轉(zhuǎn)為多題把關(guān),因此解答題都設(shè)置了層次分明的臺階,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有咬手的關(guān)卡,看似難做的題也有可得分之處。所以考試中看到容易題不可掉以輕心,看到新面孔的難題不要膽怯,冷靜思考、仔細分析,定能得到應(yīng)有的分數(shù)。
高一數(shù)學解題的技巧介紹 篇8
一.基礎(chǔ)篇之突破公式概念及圖形
高中數(shù)學考試中涉及的公式概念圖形不完全是課本中涉及的,有相當一部分內(nèi)容需要通過做題不斷的補充總結(jié),那么概念公式怎么學習呢?
1.概念的學習:注重概念的內(nèi)含和外延的把握(如奇偶函數(shù)等),對于抽象的概念盡可能用自己的語言理解(如極值等),同時注意概念的相似,關(guān)聯(lián),正反對比。
2.公式的歸納學習:熟記課本公式,并在運用中簡化公式以及歸納推導新公式
3.圖形的學習;掌握基本圖形以及基本圖形的擴展圖形。
二.基礎(chǔ)篇之突破運算
運算的重要性不用我多說,運算怎么提高呢?
1.歸納圖形運算。
2.歸納各類方程和不定方法計算如指對數(shù)方程,三角方程,根式方程等。
3.掌握特殊式子變形處理以及一般的式子處理思路如分式,根式等處理策略。
4.在平時計算時歸納容易忽視的細節(jié)運算以及一些快速特殊計算方法。
三.解題篇之選擇題
選擇題從四個方面進行歸納學習:
1.快速計算策略
2選項特征.
3題目信息暗示及一般處理方法如涉及抽象問題我們該怎樣處理呢,遇到圖形又怎樣處理呢等
4.選擇題中的一些特殊結(jié)論公式等的歸納
【高一數(shù)學解題的技巧介紹(通用8篇)】相關(guān)文章:
高考文科數(shù)學解題技巧08-25
高考數(shù)學快速解題技巧08-25
高考數(shù)學函數(shù)解題技巧08-25
高考數(shù)學導數(shù)解題技巧08-25
考研數(shù)學復習階段的解題技巧12-07
考研數(shù)學沖刺必備的解題技巧12-11
高考數(shù)學試題的解題技巧09-14
GMAT數(shù)學的經(jīng)典題目解題技巧10-24
高考數(shù)學壓軸題解題技巧06-07