亚洲精品中文字幕无乱码_久久亚洲精品无码AV大片_最新国产免费Av网址_国产精品3级片

數(shù)學 百文網(wǎng)手機站

高一數(shù)學知識點

時間:2022-01-26 17:27:42 數(shù)學 我要投稿

高一數(shù)學集合知識點

  在現(xiàn)實學習生活中,大家都背過不少知識點,肯定對知識點非常熟悉吧!知識點就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。哪些知識點能夠真正幫助到我們呢?下面是小編整理的高一數(shù)學集合知識點,希望對大家有所幫助。

高一數(shù)學集合知識點

  高一數(shù)學知識點 1

  一.知識歸納:

  1.集合的有關概念。

  1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

  注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

  ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

 、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類:有限集,無限集,空集。

  4)常用數(shù)集:N,Z,Q,R,N*

  2.子集、交集、并集、補集、空集、全集等概念。

  1)子集:若對x∈A都有x∈B,則A B(或A B);

  2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

  3)交集:A∩B={x| x∈A且x∈B}

  4)并集:A∪B={x| x∈A或x∈B}

  5)補集:CUA={x| x A但x∈U}

  注意:①? A,若A≠?,則? A ;

 、谌 , 則 ;

  ③若 且 ,則A=B(等集)

  3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。

  4.有關子集的幾個等價關系

 、貯∩B=A A B;②A∪B=B A B;③A B C uA C uB;

 、蹵∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

  5.交、并集運算的性質(zhì)

  ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

 、跜u (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

  6.有限子集的個數(shù):設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

  二.例題講解:

  【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系

  A) M=N P B) M N=P C) M N P D) N P M

  分析一:從判斷元素的共性與區(qū)別入手。

  解答一:對于集合M:{x|x= ,m∈Z};對于集合N:{x|x= ,n∈Z}

  對于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的'數(shù),所以M N=P,故選B。

  分析二:簡單列舉集合中的元素。

  解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急于判斷三個集合間的關系,應分析各集合中不同的元素。

  = ∈N, ∈N,∴M N,又 = M,∴M N,

  變式:設集合 , ,則( B )

  A.M=N B.M N C.N M D.

  解:

  當 時,2k+1是奇數(shù),k+2是整數(shù),選B

  高一數(shù)學知識點 2

  1.集合的概念

  一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集);構成集合的每個對象叫做這個集合的元素(或成員)。集合的元素可以是我們看到的、聽到的、聞到的、觸摸到的、想到的各種各樣的事物或者一些抽象符號。

  2.集合元素的特征

  由集合概念中的兩個關鍵詞“確定的”、“不同的”可以知道集合元素有兩大特征性質(zhì):

 、糯_定性特征:集合中的元素必須是明確的,不允許出現(xiàn)模棱兩可、無法斷定的陳述。

  設集合 給定,若有一具體對象 ,則 要么是 的元素,要么不是 的元素,二者必居其一,且只居其一。

 、苹ギ愋蕴卣鳎杭现械脑乇仨毷腔ゲ幌嗤。設集合 給定, 的元素是指含于其中的互不相同的元素,相同的對象歸于同一集合時只能算集合的一個元素。

  3.集合與元素之間的關系

  集合與元素之間只有“屬于 ”或“不屬于 ”。例如: 是集合 的元素,記作 ,讀作“ 屬于 ”; 不是集合 的元素,記作 ,讀作“ 不屬于 ”。

  4.集合的分類

  集合按照元素個數(shù)可以分為有限集和無限集。特殊地,不含任何元素的集合叫做空集,記作 。

  5.集合的表示方法

 、帕信e法是把元素不重復、不計順序的一一列舉出來的方法,非常直觀,一目了然。

 、铺卣餍再|(zhì)描述法是用確定的條件描述集合內(nèi)元素特點的集合表示方法。

  高一數(shù)學知識點 3

  一、集合有關概念

  1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

  2、集合的中元素的三個特性:

  ★元素的確定性;

  ★元素的互異性;

  ★元素的無序性

  說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

  (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個特性使集合本身具有了確定性和整體性。

  3、集合的表示:{}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  ★用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  ★集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法

  非負整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

  4、關于屬于的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作aA,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

  ①語言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

  5、集合的分類:

  1.有限集含有有限個元素的集合

  2.無限集含有無限個元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關系

  1.包含關系子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.相等關系(55,且55,則5=5)

  實例:設A={x|x2-1=0}B={-1,1}元素相同

  結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋集合是它本身的子集。AA

 、谡孀蛹:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄B,BC,那么AC

 、苋绻鸄B同時BA那么A=B

  3.不含任何元素的集合叫做空集,記為

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA=A,A=B=BA,AA=A,

  A=A,AB=BA.

  4、全集與補集

  ★補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  ★全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  ★性質(zhì):⑴CU(CUA)=A ⑵(CUA)

【高一數(shù)學集合知識點】相關文章:

高一數(shù)學下冊知識點01-27

高一數(shù)學知識點08-08

高一數(shù)學圓的知識點12-07

高一數(shù)學知識點提綱09-24

高一數(shù)學知識點總結09-15

高一數(shù)學函數(shù)知識點9篇01-26

高一數(shù)學知識點最新歸納01-09

高一數(shù)學最新人教版知識點12-31

人教版高一數(shù)學課本知識點12-07

高一數(shù)學必修五知識點框架12-07