- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 相關(guān)推薦
二次根式教案匯編八篇
作為一位杰出的老師,常常要根據(jù)教學(xué)需要編寫教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。如何把教案做到重點(diǎn)突出呢?下面是小編整理的二次根式教案8篇,希望對大家有所幫助。
二次根式教案 篇1
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會進(jìn)行簡單的二次根式的除法運(yùn)算;
(3) 理解最簡二次根式的.概念.
2.目標(biāo)解析
(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算.
(3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計運(yùn)算結(jié)果,明確運(yùn)算方向.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計
1.復(fù)習(xí)提問,探究規(guī)律
問題1 二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動 學(xué)生回答。
【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標(biāo)檢測設(shè)計
二次根式教案 篇2
一、內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).
對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;
。2)會運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
(3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);
。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
。3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問題診斷分析
二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過程設(shè)計
1.探究性質(zhì)1
問題1 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負(fù)數(shù)的算術(shù)平方根的平方.
問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的'性質(zhì): ( ≥0).
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計算
(1)
。2)
師生活動:學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運(yùn)用.
2.探究性質(zhì)2
問題4 你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.
【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.
問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).
師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).
【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?
師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計算
。1)
(2)
師生活動:學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運(yùn)用.
3.歸納代數(shù)式的概念
問題7 回顧我們學(xué)過的式子,如 ___________ ( ≥0),這些式子有哪些共同特征?
師生活動:學(xué)生概括式子的共同特征,得得出代數(shù)式的概念.
【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
(1)算一算:
【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.
(2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?
【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
。3)談一談你對 與 的認(rèn)識.
【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.
5.總結(jié)反思
(1)你知道了二次根式的哪些性質(zhì)?
(2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?
(3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?
(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
二次根式教案 篇3
目 標(biāo)
1. 熟練地運(yùn)用二次根式的性質(zhì)化簡二次根式;
2. 會運(yùn)用二次根式解決簡單的實(shí)際問題;
3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價值。
教學(xué)設(shè)想
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識和綜合運(yùn)用,思路比較復(fù)雜。
教 學(xué) 程序 與 策 略
一、預(yù)習(xí)檢測:
1.解決節(jié)前問題:
如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運(yùn)算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)
讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實(shí)際上是哪些線段的.和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡嗎?
注意解題格式
教 學(xué) 程 序 與 策 略
三、鞏固練習(xí):
完成課本P17、1,組長檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學(xué)生寫出解題過程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運(yùn)用二次根式解決簡單的實(shí)際問題時應(yīng)注意的的問題
六、堂堂清
1: 作業(yè)本(2)
2:課本P17頁:第4、5題選做。
二次根式教案 篇4
活動1、提出問題
一個運(yùn)動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問題:10+20是什么運(yùn)算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的.進(jìn)行合并。
活動3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答:這個運(yùn)動場要準(zhǔn)備(10+20)平方米的草皮。
教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
、僭O(shè)=,類比合并同類項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡,再合并的解題思路
③先化簡,再合并
學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。
提醒學(xué)生注意先化簡成最簡二次根式后再判斷。
二次根式教案 篇5
第十六章 二次根式
代數(shù)式用運(yùn)算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式
5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡二次根式時,當(dāng)根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.
解:乙的解答是錯誤的.因?yàn)楫?dāng)a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.
本節(jié)課通過“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對知識的形成與掌握變得簡單起來,將一個一個知識點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學(xué)生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.
練習(xí)(教材第4頁)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習(xí)題16.1(教材第5頁)
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時,有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.
7.解:(1)∵x2+1>0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時, 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時,在實(shí)數(shù)范圍內(nèi)有意義.
8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時,t= =,當(dāng)h=25時,t= =.故當(dāng)h=10和h=25時,小球落地所用的時間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時, r= =,當(dāng)V=10π時,r= =1,當(dāng)V=20π時,r= =.
如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡:+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡.
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類化簡問題要特別注意符號問題.
化簡:.
〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當(dāng)x≥3時,=|x-3|=x-3;
當(dāng)x<3時,=|x-3|=-(x-3)=3-x.
[解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進(jìn)行討論.
5
O
M
二次根式教案 篇6
1.請同學(xué)們回憶(≥0,b≥0)是如何得到的?
2.學(xué)生觀察下面的例子,并計算:
由學(xué)生總結(jié)上面兩個式的關(guān)系得:
類似地,請每個同學(xué)再舉一個例子,然后由這些特殊的例子,得出:
(≥0,b0)
使學(xué)生回憶起二次根式乘法的運(yùn)算方法的推導(dǎo)過程.
類似地,請每個同學(xué)再舉一個例子,
請學(xué)生們思考為什么b的取值范圍變小了?
與學(xué)生一起寫清解題過程,提醒他們被開方式一定要開盡.
對比二次根式的乘法推導(dǎo)出除法的運(yùn)算方法
增強(qiáng)學(xué)生的自信心,并從一開始就使他們參與到推導(dǎo)過程中來.
對學(xué)生進(jìn)一步強(qiáng)化被開方數(shù)的取值范圍,以及分母不能為零.
強(qiáng)化學(xué)生的解題格式一定要標(biāo)準(zhǔn).
教學(xué)過程設(shè)計
問題與情境師生行為設(shè)計意圖
活動二自我檢測
活動三挑戰(zhàn)逆向思維
把反過來,就得到
。ā0,b0)
利用它就可以進(jìn)行二次根式的化簡.
例2化簡:
。1)
。2)(b≥0).
解:(1)(2)練習(xí)2化簡:
(1)(2)活動四談?wù)勀愕氖斋@
1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).
2.會利用商的算術(shù)平方根的性質(zhì)進(jìn)行簡單的二次根式的化簡.
找四名學(xué)生上黑板板演,其余學(xué)生在練習(xí)本上計算,然后再找學(xué)生指出不足.
二次根式的.乘法公式可以逆用,那除法公式可以逆用嗎?
找學(xué)生口述解題過程,教師將過程寫在黑板上.
請學(xué)生仿照例題自己解決這兩道小題,組長檢查本組的學(xué)習(xí)情況.
請學(xué)生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.
為了更快地發(fā)現(xiàn)學(xué)生的錯誤之處,以便糾正.
此處進(jìn)行簡單處理是因?yàn)橛卸胃降某朔ü降哪嬗米骰A(chǔ)理解并不難.
讓學(xué)困生在自己做題時有一個參照.
充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.
二次根式教案 篇7
一、教學(xué)目標(biāo)
1.了解二次根式的意義;
2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;
4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍.
難點(diǎn):確定二次根式中字母的取值范圍.
三、教學(xué)方法
啟發(fā)式、講練結(jié)合.
四、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫平方根、算術(shù)平方根?
2.說出下列各式的意義,并計算:
通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.
觀察上面幾個式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,
表示的是算術(shù)平方根.
(二)引入新課
我們已遇到的這樣的'式子是我們這節(jié)課研究的內(nèi)容,引出:
新課:二次根式
定義: 式子 叫做二次根式.
對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.
例1 當(dāng)a為實(shí)數(shù)時,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四個是二次根式. 因?yàn)閍是實(shí)數(shù)時,a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0
例2 x是怎樣的實(shí)數(shù)時,式子 在實(shí)數(shù)范圍有意義?
解:略.
說明:這個問題實(shí)質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子 有意義.
例3 當(dāng)字母取何值時,下列各式為二次根式:
(1) (2) (3) (4)
分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.
解:(1)∵a、b為任意實(shí)數(shù)時,都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時, 是二次根式.
(2)-3x0,x0,即x0時, 是二次根式.
(3) ,且x0,x0,當(dāng)x0時, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所滿足的條件:
(1) ; (2) ; (3) ; (4)
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何實(shí)數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實(shí)數(shù).
(4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.
(三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))
1.式子 叫做二次根式,實(shí)際上是一個非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式.
2.式子中,被開方數(shù)(式)必須大于等于零.
(四)練習(xí)和作業(yè)
練習(xí):
1.判斷下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因?yàn)閤是實(shí)數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.
2.a是怎樣的實(shí)數(shù)時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?
五、作業(yè)
教材P.172習(xí)題11.1;A組1;B組1.
六、板書設(shè)計
二次根式教案 篇8
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計
小結(jié)、歸納、提高
三、重點(diǎn)、難點(diǎn)解決辦法
1.教學(xué)重點(diǎn):分母有理化.
2.教學(xué)難點(diǎn):分母有理化的技巧.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
【復(fù)習(xí)提問】
二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.
例1 說出下列算式的運(yùn)算步驟和順序:
。1) (先乘除,后加減).
。2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運(yùn)算).
。3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.
例2 把下列各式的'分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
【二次根式教案】相關(guān)文章:
二次根式教案01-09
二次根式教案11-10
二次根式數(shù)學(xué)教案11-26
二次根式教案6篇02-21
二次根式教案三篇04-12
二次根式教案15篇02-15
二次根式教案(15篇)02-16
精選二次根式教案(通用10篇)09-27
二次根式教案(集合15篇)02-27
數(shù)學(xué)最簡二次根式教案12-30