小學(xué)五下數(shù)學(xué)應(yīng)用題
小學(xué)數(shù)學(xué)中把含有數(shù)量關(guān)系的實(shí)際問(wèn)題用語(yǔ)言或文字?jǐn)⑹龀鰜?lái),這樣所形成的題目叫做應(yīng)用題。任何一道應(yīng)用題都由兩部分構(gòu)成。第一部分是已知條件(簡(jiǎn)稱條件),第二部分是所求問(wèn)題(簡(jiǎn)稱問(wèn)題)。應(yīng)用題的條件和問(wèn)題,組成了應(yīng)用題的結(jié)構(gòu)。
小學(xué)五下數(shù)學(xué)應(yīng)用題
【含義】在解題時(shí),先求出一份是多少(即單一量),然后以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。這類應(yīng)用題叫做歸一問(wèn)題。
【數(shù)量關(guān)系】
總量÷份數(shù)=1份數(shù)量
1份數(shù)量×所占份數(shù)=所求幾份的數(shù)量
另一總量÷(總量÷份數(shù))=所求份數(shù)
【解題思路和方法】
先求出單一量,以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。
例1 買(mǎi)5支鉛筆要0.6元錢(qián),買(mǎi)同樣的鉛筆16支,需要多少錢(qián)?
解(1)買(mǎi)1支鉛筆多少錢(qián)? 0.6÷5=0.12(元)
(2)買(mǎi)16支鉛筆需要多少錢(qián)?0.12×16=1.92(元)
列成綜合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3臺(tái)拖拉機(jī)3天耕地90公頃,照這樣計(jì)算,5臺(tái)拖拉機(jī)6 天耕地多少公頃?
解(1)1臺(tái)拖拉機(jī)1天耕地多少公頃? 90÷3÷3=10(公頃)
(2)5臺(tái)拖拉機(jī)6天耕地多少公頃? 10×5×6=300(公頃)
列成綜合算式 90÷3÷3×5×6=10×30=300(公頃)
答:5臺(tái)拖拉機(jī)6 天耕地300公頃。
例3 5輛汽車(chē)4次可以運(yùn)送100噸鋼材,如果用同樣的7輛汽車(chē)運(yùn)送105噸鋼材,需要運(yùn)幾次?
解 (1)1輛汽車(chē)1次能運(yùn)多少噸鋼材? 100÷5÷4=5(噸)
(2)7輛汽車(chē)1次能運(yùn)多少噸鋼材? 5×7=35(噸)
(3)105噸鋼材7輛汽車(chē)需要運(yùn)幾次? 105÷35=3(次)
列成綜合算式 105÷(100÷5÷4×7)=3(次)
答:需要運(yùn)3次。
2 歸總問(wèn)題
【含義】 解題時(shí),常常先找出“總數(shù)量”,然后再根據(jù)其它條件算出所求的問(wèn)題,叫歸總問(wèn)題。所謂“總數(shù)量”是指貨物的總價(jià)、幾小時(shí)(幾天)的總工作量、幾公畝地上的總產(chǎn)量、幾小時(shí)行的總路程等。
【數(shù)量關(guān)系】
1份數(shù)量×份數(shù)=總量
總量÷1份數(shù)量=份數(shù)
總量÷另一份數(shù)=另一每份數(shù)量
【解題思路和方法】
先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。
例1 服裝廠原來(lái)做一套衣服用布3.2米,改進(jìn)裁剪方法后,每套衣服用布2.8米。原來(lái)做791套衣服的布,現(xiàn)在可以做多少套?
解 (1)這批布總共有多少米? 3.2×791=2531.2(米)
(2)現(xiàn)在可以做多少套? 2531.2÷2.8=904(套)
列成綜合算式 3.2×791÷2.8=904(套)
答:現(xiàn)在可以做904套。
例2 小華每天讀24頁(yè)書(shū),12天讀完了《紅巖》一書(shū)。小明每天讀36頁(yè)書(shū),幾天可以讀完《紅巖》?
解 (1)《紅巖》這本書(shū)總共多少頁(yè)? 24×12=288(頁(yè))
(2)小明幾天可以讀完《紅巖》? 288÷36=8(天)
列成綜合算式 24×12÷36=8(天)
答:小明8天可以讀完《紅巖》。
例3 食堂運(yùn)來(lái)一批蔬菜,原計(jì)劃每天吃50千克,30天慢慢消費(fèi)完這批蔬菜。后來(lái)根據(jù)大家的意見(jiàn),每天比原計(jì)劃多吃10千克,這批蔬菜可以吃多少天?
解 (1)這批蔬菜共有多少千克? 50×30=1500(千克)
(2)這批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成綜合算式 50×30÷(50+10)=1500÷60=25(天)
答:這批蔬菜可以吃25天。
3 和差問(wèn)題
【含義】 已知兩個(gè)數(shù)量的和與差,求這兩個(gè)數(shù)量各是多少,這類應(yīng)用題叫和差問(wèn)題。
【數(shù)量關(guān)系】
大數(shù)=(和+差)÷ 2
小數(shù)=(和-差)÷ 2
【解題思路和方法】
簡(jiǎn)單的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。
例1 甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?
解 甲班人數(shù)=(98+6)÷2=52(人)
乙班人數(shù)=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 長(zhǎng)方形的長(zhǎng)和寬之和為18厘米,長(zhǎng)比寬多2厘米,求長(zhǎng)方形的面積。
解 長(zhǎng)=(18+2)÷2=10(厘米)
寬=(18-2)÷2=8(厘米)
長(zhǎng)方形的面積 =10×8=80(平方厘米)
答:長(zhǎng)方形的面積為80平方厘米。
例3 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
解 甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數(shù),丙是小數(shù)。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙兩車(chē)原來(lái)共裝蘋(píng)果97筐,從甲車(chē)取下14筐放到乙車(chē)上,結(jié)果甲車(chē)比乙車(chē)還多3筐,兩車(chē)原來(lái)各裝蘋(píng)果多少筐?
解 “從甲車(chē)取下14筐放到乙車(chē)上,結(jié)果甲車(chē)比乙車(chē)還多3筐”,這說(shuō)明甲車(chē)是大數(shù),乙車(chē)是小數(shù),甲與乙的差是(14×2+3),甲與乙的和是97,因此甲車(chē)筐數(shù)=(97+14×2+3)÷2=64(筐)
乙車(chē)筐數(shù)=97-64=33(筐)
答:甲車(chē)原來(lái)裝蘋(píng)果64筐,乙車(chē)原來(lái)裝蘋(píng)果33筐。
4 和倍問(wèn)題
【含義】 已知兩個(gè)數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類應(yīng)用題叫做和倍問(wèn)題。
【數(shù)量關(guān)系】
總和 ÷(幾倍+1)=較小的數(shù)
總和 - 較小的數(shù) = 較大的`數(shù)
較小的數(shù) ×幾倍 = 較大的數(shù)
【解題思路和方法】
簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
例1 果園里有杏樹(shù)和桃樹(shù)共248棵,桃樹(shù)的棵數(shù)是杏樹(shù)的3倍,求杏樹(shù)、桃樹(shù)各多少棵?
解 (1)杏樹(shù)有多少棵? 248÷(3+1)=62(棵)
(2)桃樹(shù)有多少棵? 62×3=186(棵)
答:杏樹(shù)有62棵,桃樹(shù)有186棵。
例2 東西兩個(gè)倉(cāng)庫(kù)共存糧480噸,東庫(kù)存糧數(shù)是西庫(kù)存糧數(shù)的1.4倍,求兩庫(kù)各存糧多少噸?
解 (1)西庫(kù)存糧數(shù)=480÷(1.4+1)=200(噸)
(2)東庫(kù)存糧數(shù)=480-200=280(噸)
答:東庫(kù)存糧280噸,西庫(kù)存糧200噸。
例3 甲站原有車(chē)52輛,乙站原有車(chē)32輛,若每天從甲站開(kāi)往乙站28輛,從乙站開(kāi)往甲站24輛,幾天后乙站車(chē)輛數(shù)是甲站的2倍?
解 每天從甲站開(kāi)往乙站28輛,從乙站開(kāi)往甲站24輛,相當(dāng)于每天從甲站開(kāi)往乙站(28-24)輛。把幾天以后甲站的車(chē)輛數(shù)當(dāng)作1倍量,這時(shí)乙站的車(chē)輛數(shù)就是2倍量,兩站的車(chē)輛總數(shù)(52+32)就相當(dāng)于(2+1)倍,
那么,幾天以后甲站的車(chē)輛數(shù)減少為
(52+32)÷(2+1)=28(輛)
所求天數(shù)為 (52-28)÷(28-24)=6(天)
答:6天以后乙站車(chē)輛數(shù)是甲站的2倍。
例4 甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?
解 乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。
因?yàn)橐冶燃椎?倍少4,所以給乙加上4,乙數(shù)就變成甲數(shù)的2倍;
又因?yàn)楸燃椎?倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;
這時(shí)(170+4-6)就相當(dāng)于(1+2+3)倍。那么,
甲數(shù)=(170+4-6)÷(1+2+3)=28
乙數(shù)=28×2-4=52
丙數(shù)=28×3+6=90
答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。
5 差倍問(wèn)題
【含義】 已知兩個(gè)數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類應(yīng)用題叫做差倍問(wèn)題。
【數(shù)量關(guān)系】
兩個(gè)數(shù)的差÷(幾倍-1)=較小的數(shù)
較小的數(shù)×幾倍=較大的數(shù)
【解題思路和方法】
簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
例1 果園里桃樹(shù)的棵數(shù)是杏樹(shù)的3倍,而且桃樹(shù)比杏樹(shù)多124棵。求杏樹(shù)、桃樹(shù)各多少棵?
解 (1)杏樹(shù)有多少棵? 124÷(3-1)=62(棵)
(2)桃樹(shù)有多少棵? 62×3=186(棵)
答:果園里杏樹(shù)是62棵,桃樹(shù)是186棵。
例2 爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?
解 (1)兒子年齡=27÷(4-1)=9(歲)
(2)爸爸年齡=9×4=36(歲)
答:父子二人今年的年齡分別是36歲和9歲。
例3 商場(chǎng)改革經(jīng)營(yíng)管理辦法后,本月盈利比上月盈利的2倍還多12萬(wàn)元,又知本月盈利比上月盈利多30萬(wàn)元,求這兩個(gè)月盈利各是多少萬(wàn)元?
解 如果把上月盈利作為1倍量,則(30-12)萬(wàn)元就相當(dāng)于上月盈利的(2-1)倍,因此
上月盈利=(30-12)÷(2-1)=18(萬(wàn)元)
本月盈利=18+30=48(萬(wàn)元)
答:上月盈利是18萬(wàn)元,本月盈利是48萬(wàn)元。
例4 糧庫(kù)有94噸小麥和138噸玉米,如果每天運(yùn)出小麥和玉米各是9噸,問(wèn)幾天后剩下的玉米是小麥的3倍?
解 由于每天運(yùn)出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于原來(lái)的數(shù)量差(138-94)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(138-94)就相當(dāng)于(3-1)倍,因此
剩下的小麥數(shù)量=(138-94)÷(3-1)=22(噸)
運(yùn)出的小麥數(shù)量=94-22=72(噸)
運(yùn)糧的天數(shù)=72÷9=8(天)
答:8天以后剩下的玉米是小麥的3倍。
【小學(xué)五下數(shù)學(xué)應(yīng)用題】相關(guān)文章:
數(shù)學(xué)應(yīng)用題小學(xué)04-05
小學(xué)數(shù)學(xué)應(yīng)用題解析04-06
小學(xué)數(shù)學(xué)應(yīng)用題及解析04-07
小學(xué)數(shù)學(xué)應(yīng)用題訓(xùn)練04-07
小學(xué)數(shù)學(xué)應(yīng)用題匯總04-07
小學(xué)數(shù)學(xué)應(yīng)用題綜合練習(xí)04-07
小學(xué)數(shù)學(xué)應(yīng)用題綜合訓(xùn)練04-07
小學(xué)數(shù)學(xué)的應(yīng)用題的綜合訓(xùn)練04-07